
‘-

1

Adam M. Houser

PhD Candidate,
Department of Industrial and Systems Engineering

Applying formal methods
to complex problems in
human-systems interaction

‘-

2

● Overview of education and background, Buffalo and prior

● Technical experience 0: NASA NextGen airspace management project

● Technical experience 1: Mental models in cybersecurity

● Contact information, Q&A

Talk Outline

‘-

3

● PhD candidate, human factors engineering (expected Sept 2018)

● MS, Industrial Engineering, 2015

● MAE, Secondary Science Education (Physics, Chemistry), 2012

● BA, Applied Philosophy (Epistemology, Analytic Philosophy), 2010

● RA, Formal Human Systems Lab

● Junior Cognitive Systems Engineer, Resilient Cognitive Solutions

Speaker background

‘-

4

● Complex, safety-critical systems: systems, operators, and the world (dynamic)

● Human error as the “cause” or “major contributing factor” of system failure

o AF447, CA3407, Therac-25, Three Mile Island, USS John S McCain, …

o 70% - 80% of civil and military aviation accidents (FAA, 2001)

o >250,000 deaths per annum due to medical error (The BMJ, 2016)

● Often result from complex, unanticipated human-systems interaction

● FM: discovery of unanticipated interactions through exhaustive statespace

search

Motivation: why formal methods?

‘-

5

● Well-defined mathematical languages and techniques for modeling, specifying,

and verifying systems

Formal methods and model checking

● Models: mathematical description of
target system behavior

● Specifications: logical assertion of
desirable system behaviors as properties

● Verification: mathematical proof about
whether the model satisfies the
specifications

‘-

6

An automatic means of performing formal verification

6

System
Model

Model
Checker

Verification
Report

Specification

Model checking

‘-

7

7

System
Model

Model
Checker

Verification
Report

Specification

A finite state machine model
represents system behavior

…

Variable 1 Variable N

Model checking

‘-

8

8

System
Model

Model
Checker

Verification
Report

Specification

A temporal logic specification property
asserts desirable qualities about the system

For example: “The system should never reach unsafe
state X”

G ¬ (X)

Or, “The system should always eventually reach state Y”

F (Y)

Model checking

‘-

9

9

System
Model

Model
Checker

Verification
Report

Specification

A model checker “searches”

through the model’s

statespace looking for

violations

Model checking

‘-

10

10

System
Model

Model
Checker

Verification
Report

Specification

A confirmation or

counterexample is

returned

Model checking

‘-

11

A sequence of states that lead up to a violation

…

Variable 1

Variable N

11

Counterexample

‘-

12

…

Variable 1

Variable N

12

A sequence of states that lead up to a violation

Counterexample

‘-

13

● Statespace explosion and scalability

● Limited expressive power

● Models are only robust to the properties that have
been captured

Limitations of these techniques

‘-

14

NASA NextGen airspace
management

Synergistically using formal methods and
simulation to search for excessive pilot
workload scenarios

‘-

15

● NextGen AMS: introducing more autonomy into airspace mgmt

o Function allocation changes between ATC, pilots, and automation

o Also changes autonomy, authority, and responsibility

o Distributed, complex, safety-critical system

● Problem 1: how can we synergistically use formal methods and simulation to
discover these events?

● Problem 2: are there combinations of actions/events allocated to human agents
that could result in unsafe operating conditions?

● Problem 3: what can we recommend to mitigate these conditions?

NASA NextGen: Simulation and formal methods

‘-

16

NASA NextGen:
Simulation and formal
methods architecture

‘-

17

NASA NextGen: Discovering unsafe conditions

‘-

18

NASA NextGen: Results and recommendations

‘-

19

Dissertation: Formal
methods, mental models,
and cybersecurity
Discovering unanticipated human-systems
interaction to recommend attacker
mitigations

‘-

20

● Internalized representations of system functionality

● Different representational strategies:

○ “Pictures in the mind” (de Kleer & Brown, 1981)

○ Descriptive system abstractions (Rasmussen, 1971; Rouse & Hunt, 1986)

○ “Structured knowledge” (Dutton & Starbuck, 1971)

● Strategies are not mutually exclusive (Sanderson, 1990)

Mental models in human factors engineering

‘-

21

● For this work, Norman (1983) outlines key aspects:

○ “Runnability” of mental models

○ Agreement between the user’s model
and the system image (Norman, 1986)

Mental models in human factors engineering

‘-

22

● Particular success with finding user-system mismatches for safety

○ Aircraft autopilot (Degani & Heymann, 2002)

○ Aircraft autoland (Oishi, et al., 2002)

○ Vehicle cruise control (Degani, 2004)

● Discovery of unanticipated user-system
mismatches through exhaustive
statespace search

Examples of analysis with formal methods

‘-

23

By synergistically integrating work from human factors, cybersecurity,
and formal methods, we can discover unanticipated interactions
between user mental models and program features or behaviors that
are exploitable by attackers.

By identifying and describing these interactions, we can recommend
interface changes or software patches to mitigate their harmful
effects.

My research objective

‘-

24

System

User

‘-

25

System

User {Secure, Insecure}

{Secure, Insecure}

Phase I model architecture

‘-

26

Phase II model architecture

Attacker{Secure, Insecure}

System

User {Secure, Insecure}

{Secure, Insecure}

‘-

27

How do we capture “user behavior” in a formal model?

Component 1: User models

Wash, 2010. “Folk models of home
computer security,” p. 10.

‘-

28

How do we capture attacker strategies (TTPs) in a formal model?

Component 2: Attacker models

‘-

29

• Smaller-scale version: searching for potentially dangerous and
unexpected human-systems interactions

• Use case: risks posed by receiving malicious URLs on a mobile
device

• User model leverages “big fish” folk model, clicks with little regard
to device safety

Results from Phase I analysis

‘-

30

• “Big Fish” victims resilient to neither phishing attacks nor drive-by
downloads, passive compromise, etc

• Open to many different avenues of attack

• Little user regard for inconveniences posed by mobile IU (ex:
hovering over links, URL appearance in omnibar)

Results from Phase I analysis

‘-

31

Capturing user behavior and mental models

‘-

32

Capturing user behavior and mental models

‘-

33

● Complete Phase I analysis (additional properties, if any)

● Refine into Phase II architecture (particular focus on attacker
tradecraft)

● Write everything up

Remaining work

‘-

34

Questions?

Adam M. Houser

appliedcaffeine.org

adamhous@buffalo.edu

@neutrinos4all

‘-

35

Reserve Slides

‘-

36
Fig 1. Snippet of a formal model.

Type definitions allow
model concepts to be
defined with domain
specific values.

Modules represent
components of the system
that work together to achieve
required system behavior.

Transition statements
describe the behavior of
those components in formal
representations.

‘-

37

Fig 2. Example specifications.

The model composition statement
describes how each of the modules will
be composed for checking:
synchronously ||
or
asynchronously []

Specifications use LTL to check safety
or behavioral properties, as well as
liveness (freedom from deadlock),
reachability (attainability of all nodes in
the graph), and other properties.

‘-

38

Fig 3. Snippet of a proof.

During model checking, SAL will
programmatically translate the
model into a finite state machine…

… search the state transition diagram for
a path through the diagram or condition
satisfying the specification …

… and return a proof
if the specification
holds.

‘-

39
Fig 4. Snippet of a counterexample.

If the specification does not hold,
SAL will begin building a
counterexample…

… the path through the transition
system that led to the violation of
that specification …

…that captures
the state of all
variables at each
step…

… and how long it took to execute
the entire process.

‘-

40

Code snippets: system-level behavior

‘-

41

● Statespace explosion and scalability

o Abstraction, λ-Calculus, constraint application, lookup tables, …

● Limited expressive power

o Potential use of outboard tools (ex: simulation)

● Models are only robust to the properties that have been captured

o Combefis, Giannakopoulou, Pecheur, & Feary, 2011
o Bolton, Jimenez, van Paassen, and Trujillo, 2014

Limitations of these techniques

‘-

42

● Similarities and differences between folk and mental models

○ Description of user expectations about system behavior

○ Folk models rely more heavily on metaphor (Camp, 2009)

○ Mental models more heavily emphasize runnability

● Some work moving towards mental models (Blythe & Camp, 2012)

Folk models in cybersecurity

‘-

43

Folk models in cybersecurity

Figure 1. Simulation of a decision to “back up files” run against Wash (2010)’s vandal and burglar
hacker models (Blythe & Camp, 2012, p. 89).

‘-

44

● There exist a number of methods for model extraction

○ Card-sorting tasks (Asgharpour, et al., 2007)

○ Structured and semi-structured interviews (Wash, 2010)

○ Task observations (Dutton & Starbuck, 1971)

○ Cognitive walkthroughs (Ford & Sterman, 1997)

○ Training artifact analysis (Rushby, 2001)

Mental model elicitation

‘-

45

End-user key management is still hard

https://twitter.com/thesl3ep/status/876066176589336576

