
‘-

1

Adam M. Houser
May 25, 2018

Committee: Matthew L. Bolton, Ph.D. (Chair); Ann M. Bisantz, Ph.D.;
Jun Zhuang, Ph.D.

Mental Models for
Cybersecurity
A Formal Methods Approach

‘-

2

Motivation and brief backgrounders on relevant topics

Overview of the method

Use case 1: Configuration errors in Amazon cloud storage

Use case 2: User actions when receiving phishing emails

Discussion and targets for future work

Agenda

‘-

3

Motivating the
Dissertation

‘-

4

As a domain area, cybersecurity has become a critical global concern

● Nation-state cyberattacks, ransomware, global DDoS, crime (FBI: Cyber Crime, 2016)

● Threat actors turning to human exploits

One promising approach: explore cyber through mental models and HAI

● Address not only “what” humans do, but “why” as well

● Understand how these misunderstandings can lead to vulnerabilities, breaches, system failure

Formal methods offer techniques for discovering these events

● Very good at discovery of rare, unanticipated conditions (exhaustive search, counterexample traces)

● Useful, illuminating synergistic intersection of these topics

Why formal methods in cybersecurity?

‘-

5

● Security: $75 billion industry in 2015, projected $170 billion by 2020 (Gartner, 2015; Morgan, 2016)

● Crime: $400 billion in theft and loss in 2015, projected $2 to $3 trillion by 2020 – 2021 (Juniper

Research, 2015)

● Security investments have made “hacking” more difficult

(Collet, 2014)

○ Gone are the days of Hollywood-style exploits

○ Mr. Robot: accurate but uncommon

● Humans as critical linchpins in the cyber kill chain

○ Phishing for credential theft

○ Malware for remote access

○ Ransomware for extortion

Background: Cybersecurity

‘-

6

● To bolster end-user cyber defenses: training

○ Mixed empirical data on phishing clickthrough and recidivism (repeat offenders)

(Kumaraguru, et al., 2009; Sheng, et al., 2010; Siadati, et al., 2017)

● Mental models may help explore user-based exploits more deeply

○ A “small-scale” mental representation of some aspect of the world (Craik, 1943)

○ Describes functionality of the target system (Norman, 1983, 2013)

○ Often incomplete, unscientific, can harbor “superstitious beliefs” about the system, but not

“wrong”

○ Runnable forwards and backwards (de Kleer and Brown, 1981; Norman, 1983)

Background: Mental models

‘-

7

● What are folk models?

o Phenomenological models shared among similar members of a culture (D’Andre, 1987)

o Useful, but potentially immune to falsification, posit without measurement (Dekker and Hollnagel,

2004)

● Existing work in folk modeling of user computer threats, user responses, security devices (Wash, 2010;

Kauer, 2013)

○ Heavily reliant on metaphor, lack runnability (Camp, 2004, 2009)

○ Some effort to add rigor (Blythe and Camp, 2012)

● Folk models are still useful, warts and all

○ Contain valuable insight on user security responses

○ High face validity of response data

Background: Folk models

‘-

8

● Formal methods: mathematical languages and techniques for modeling, specifying, and verifying

system models and their properties (Baier and Katoen, 2008; Bolton, 2013)

● Model checking: highly-automated approach to formal verification

● Mathematical proof that condition does or

does not exist (exhaustive search,

counterexamples)

Background: Formal methods

‘-

9

Background: Model checking

Formal Model

a

b

x y

y

x

1x x

y
2

x
3

y
y

‘-

10

Background: Model checking

Formal Model

a

b

x y

y

x

1x x

y
2

x
3

y
y

G (State ≠ b,3)

Specification(s)

G (State ≠ b,1)

‘-

11

Background: Model checking

Formal Model Model Checking

a

b

x y

y

x

1x x

y
2

x
3

y
y

b,2
x

a,3

y

x

y

x
y x

y

a,1

b,1

G (State ≠ b,3)

Specification(s)

G (State ≠ b,1)

‘-

12

Background: Model checking

Formal Model Model Checking Verification Report(s)

a

b

x y

y

x

1x x

y
2

x
3

y
y

G (State ≠ b,3)

Specification(s)

b,2
x

a,3

y

x

y

x
y x

y

a,1

b,1

G (State ≠ b,1)

G (State ≠ b,1)

G (State ≠ b,3)

‘-

13

● Mode confusion: mismatch between user mental model of system state and state of actual

system

○ Cruise-control systems (Degani, Shafto, and Kirlik, 1999)

○ Aircraft autopilot (Degani and Heymann, 2002)

○ Aircraft auto-land (Oishi et al., 2003)

● Error and blocking states (Degani and Heymann, 2002)

○ States should transition synchronously

○ Error state: user thinks move is legal, machine state is illegal

○ Blocking state: system transition happens or is possible, but user doesn’t see it or is unaware

of it

Background: Formal methods

‘-

14

Degani: human and machine models

‘-

15

Degani’s error states

‘-

16

Degani’s blocking state

‘-

17

Research Questions

‘-

18

How can rigorous characterization of computer user mental models and their treatment of cyber

threats help network defenders become more resilient to cyberattacks that exploit human users?

Research Question 1

How can formal methods techniques be extended to give analysts the ability to discover and describe

real-world security vulnerabilities that arise from the interaction between user mental models of

computer security tools and the tools themselves?

Research Question 2

‘-

19

Establish a rigorous framework for exploring user mental models of computer security risks with

formal methods techniques.

Demonstrate that these risks correspond to vulnerabilities that attackers could potentially exploit in

modern computer systems.

Extend our framework to incorporate folk models of cybersecurity risks.

Analyze data collected from multiple sources to validate our modeling approach by discovering

potential configuration errors anticipated with our method

Research Objectives

‘-

20

Part I:

Generic Method
Formulation

‘-

21

Motivation: user-enabled attacks are a major cybersecurity problem, expected continual

growth

Formulate a framework that:

● extends Degani and Heymann (2002)’s architecture to a new domain

● can discover unanticipated cybersecurity “vulnerabilities”

● captures developments in a theoretically-grounded, application-agnostic approach

Solution: our Generic Method

Problem overview

‘-

22

Generic formulation of the method

‘-

23

Generic system model architecture

‘-

24

Generic system model architecture

Generates input events driven by user interaction:

• create system resources

• modify system resources

• delete system resources

‘-

25

Generic system model architecture

Represents the user’s mental model of the system:

• what does she think the system is currently doing?

• user state ↦ “safe” or “vulnerable”

‘-

26

Generic system model architecture

Represents the actual system state:

• what is the system currently doing?

• system state ↦ “secure” or “insecure”

‘-

27

Generic system model

Auxiliary module for computing variables

useful for checking specifications

(mismatches between system and user state)

‘-

28

Generic system model

theModel: actionGenerator || user || system || comparator

‘-

29

Generic formulation of the method

𝐺 ¬ (𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑒𝑐𝑢𝑟𝑒)

𝐺 ¬ (𝑢𝑠𝑒𝑟 = 𝑠𝑎𝑓𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒)

𝐺 ¬
𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒

AND 𝐗 (𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑒𝑐𝑢𝑟𝑒)

No Error States: No False Vulnerability

No False Safety

No Blocking States:

‘-

30

Use case:
Amazon Web Services

‘-

31

• Largest single provider of cloud computing and data storage services on the planet

• Range of (131) services, from small (AWS EC2) to very large (AWS Snowmobile)

• Netflix, Hulu, GE Oil and Gas, Kellogg’s, Airbnb, NASA, NASDAQ, FICO

• $20B in revenue for Amazon in AY 2017

• Pay as you go, so anyone can create a free account

• What could go wrong?

What is AWS?

‘-

32

• AWS Simple Storage Service, or S3

• Potentially difficult to secure, leaving data unprotected – easy targets

• Notable recent events:

• Analytics company, 198 million voting records (Newman, 2017)

• BAH, 60K DoD files and passwords (Cameron, 2017)

• Pentagon, 100GB of contract and sensitive info (O’Sullivan, 2017)

• Verizon, 14 million customer records (Whittaker, 2017)

• National Credit Union Federation, 100GB of Social Security, bank accounts, and

customer credit reports (Ashok, 2017)

Customer data “fire sales”

‘-

33

How does S3 work?

‘-

34

How does an ACL work?

‘-

35

How does a policy work?

‘-

36

• Store files of any type, from personal to corporate (I do)

• Control who can access what with ACLs and policies

• Apply server-side encryption to keep data safe

• Treat like an unlimited Dropbox or file sharing service

• Host static websites (I did)

What can you do with S3?

‘-

37

• Widespread use among a range of customers

• Security controls are difficult to understand, hard to configure, offer overlapping

functionality

• Potentially simple user model, potentially complex system model

• How will users know if something is in an unsafe state?

• Will they know how to recover if something bad happens?

• Difficult to anticipate how configuration could compromise security

Our method is well-suited for this use case

‘-

38

Analysis and Results

‘-

39

• A user can take a number of actions with their S3 account

• Create, modify, or delete resources (bucket and objects)

• Change encryption settings on resources

• Change permissions on resources (read, write, readPerms, writePerms)

• Can a user interacting with AWS S3 inadvertently compromise their security through a

combination of configuration decisions?

Analysis scenario

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

Variables describing things the
human thinks about the system:

• Whether or not the bucket exists
• How the bucket is encrypted (if at all)
• The bucket’s ACL permissions
• Whether or not the object exists
• How the object is encrypted (if at all)
• The object’s ACL permissions

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

Variables describing actions and
their associated changes to ACL
permissions and encryption

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

Variables representing what the
human thinks about the Read and
Write state of the system:
safe or vulnerable

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

The initial mental model
state:
• No bucket or object exists
• No encryption is set
• No assumptions are made

about permissions

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

Guarded transitions in
mental model state based
on actions

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

Example: Changing the bucket
permissions sets the bucket’s
and the object’s permissions to
the new permissions values

mental: MODULE = BEGIN

LOCAL thinkBucketExists: BOOLEAN

LOCAL thinkBucketEncryption: encryptionSetting

LOCAL thinkBucketACL: permissionSetting

LOCAL thinkObjectExists: BOOLEAN

LOCAL thinkObjectEncryption: encryptionSetting

LOCAL thinkObjectACL: permissionSetting

INPUT action: userAction

INPUT actionPerm: permissionSetting

INPUT actionEnc: encryptionSetting

OUTPUT userWrite: userState

OUTPUT userRead: userState

INITIALIZATION

thinkBucketExists = FALSE;

thinkObjectExists = FALSE;

thinkBucketEncryption = none_Option;

thinkObjectEncryption = none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OR thinkObjectACL.writePermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.read OR thinkObjectACL.readPermissions) AND

thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

…

…
TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists -->
thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists -->
thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists -->
thinkBucketExists' = TRUE;
thinkBucketEncryption' = actionEnc;
thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
thinkBucketExists' = FALSE;
thinkBucketEncryption' = none_Option;
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists -->
thinkBucketACL' = actionPerm;
thinkObjectACL' = actionPerm;

[] action = change_BucketEncryption AND thinkBucketExists -->
thinkBucketEncryption' = actionEnc;
thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN

none_Option ELSE actionEnc ENDIF;
[] ELSE -->

thinkObjectExists' = thinkObjectExists;
]

END;

The human’s perception about Read and Write safety:

IF the object exists and: it has public permissions,
the object can be written or its permissions can be written
it has no encryption

THEN then writing is Vulnerable OTHERWISE writing is Safe

IF the object exists and: it has public permissions,
the object can be read or its permissions can be read
it has no encryption

THEN then reading is Vulnerable OTHERWISE reading is Safe

‘-

48

Results

‘-

49

Results

Improper Understanding

of Encryption

Improper Understanding

of Permissions

‘-

50

Results: False Security Read Mismatch

Creates an
encrypted

public bucket

Creates an
encrypted

private object

Makes the
object public

‘-

51

Results: False Vulnerability Write Mismatch

Creates an
encrypted

“authenticated
user write-only”

bucket

Creates a non-
encrypted private

object

Makes the bucket
“public read” and
its permissions
“public write”

‘-

52

• We recreated all four scenarios within an AWS S3 account

• All represent sensible scenarios possible with a minimum of clicks and steps

• Permissions mismatches could explain majority of scenarios identified in press
coverage about AWS breaches (more investigation needed)

Validation

‘-

53

• Our method only uses a generically-instantiated mental model

• Lacks the capability to determine effects of different mental models on cybersecurity

• Addressed in second part of the dissertation

Potential limitations

‘-

54

Part II:

Integrating folk models
of cybersecurity
vulnerabilities

‘-

55

Extending the method

‘-

56

Extending the method: Folk model input

‘-

57

Extending the method

‘-

58

Extending the method: Updated architecture

Represents the user’s folk model of a potential threat:

• what does she think is the threat is & its properties?

• does she think the system can defend against it?

• user state ↦ “safe,” “vulnerable, or “ambiguous”

‘-

59

Extending the method: Updated architecture

𝐺 ¬ (𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑒𝑐𝑢𝑟𝑒)
𝐺 ¬ (𝑢𝑠𝑒𝑟 = 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑒𝑐𝑢𝑟𝑒)

𝐺 ¬ 𝑢𝑠𝑒𝑟 = 𝑠𝑎𝑓𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒
𝐺 ¬ (𝑢𝑠𝑒𝑟 = 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒)

𝐺 ¬
𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒

AND 𝐗 (𝑢𝑠𝑒𝑟 = 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 ∧ 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑠𝑒𝑐𝑢𝑟𝑒)

No Error States: No False Vulnerability

No False Safety

No Blocking States:

‘-

60

Use case:
Phishing attacks

‘-

61

• Phishing: sending deceptive emails with the intent of gathering personal information,
credentials, installing malware, or other malicious purposes

• Email is received that has one of three “threat types”: link, download, and attachment

• Users respond to them in a way informed by their folk model of the perceived threat:

Click a website link Download from website Open attachment
Toggle ad blocker Patch their software No Action

Analysis scenario

‘-

62

Action Folk models

Graffiti Burglar Big Fish Contractor

Toggle ad blocker Depends Depends Depends No Change

Open attachment Insecure Insecure Ambiguous Ambiguous

Download from website Depends Depends No Change No Change

Click a website link Insecure Insecure Depends Insecure

Patch their software Insecure Insecure No Change No Change

No Action No Change No Change No Change No Change

‘-

63

Action Folk models

Graffiti Burglar Big Fish Contractor

Toggle ad blocker Depends Depends Depends No Change

Open attachment Insecure Insecure Ambiguous Ambiguous

Download from website Depends Depends No Change No Change

Click a website link Insecure Insecure Depends Insecure

Patch their software Insecure Insecure No Change No Change

No Action No Change No Change No Change No Change

IF siteContent = basic AND software = secure THEN
no change

ELSE
vulnerable

ENDIF

‘-

64

Results: False Vulnerability Mismatches

‘-

65

Results: False Safety Mismatches

‘-

66

Results: Blocking State Mismatches

‘-

67

• Used data collected by Cofense, phishing training and simulation
o 2016: 18mos, 40 million simulation emails, 1,000 organizations
o 2017: 24mos, 52.4 million emails, 216,000 real emails, 1,400 organizations

• Significant agreement between data and findings

o False security: Real users fell for link-based attacks more than others

o False vulnerability: Real users drastically over-report emails with links as phishing

attempts

o High face validity associated with these findings

• Some limitations to using a “found” data set vs purpose-collected data

Validation using real-world data

‘-

68

Conclusion

‘-

69

• A framework that …
o extends Degani and Heymann (2002)’s concepts to cybersecurity
o establishes formal analytic constructs for cybersecurity applications
o improves rigor and brings runnability to folk modeling approaches

• To the best of our knowledge, these are completely novel developments

• Validated our findings using real-world data

o Sometimes difficult to do with work in formal methods

o Finds potential vulnerabilities that exist without altering code or breaking the law

Significant findings and takeaways

‘-

70

• Additional CTL recovery specifications

• Update Wash (2010)’s folk modeling concepts for modern threats

• Expand AWS method to include complete bucket policies

• Investigate physical exploit delivery strategies (e.g., rubber duckies)

• Explore specific software utilities (Gmail vs Outlook vs Thunderbird)

• Integrate our method into cybersecurity testbeds (National Cyber Range)

Future work

‘-

71

Dissertation-related work:
Houser, A., and Bolton, M.L. (2017). Formal mental models for inclusive privacy and security. In Proceedings of the Thirteenth Symposium on

Usable Privacy and Security (SOUPS), Santa Clara CA.

Houser, A., Bolton, M.L., Bisantz, A.M., and Zhuang, J. (n.d.) Discovering unanticipated human-automation interaction in cybersecurity using formal

methods techniques. In preparation.

Plus one more journal article and perhaps two more conference papers…

Additional work:
Houser, A., Ma, L., Feigh, K., and Bolton, M.L. (2017). Using formal methods to reason about taskload and resource conflicts in simulated air traffic

scenarios. Innovations in Systems and Software Engineering, 14(1), pp. 1-14. DOI 10.1007/s11334-017-0305-2.

Bolton, M. L., Zheng, X., Molinaro, K., Houser, A., and Li, M. (2016). Improving the scalability of formal human-automation interaction verification

analyses that use task analytic models. Innovation in Systems and Software Engineering, 13(1), pp. 1-17. DOI 10.1007/s11334-016-0272-z.

Houser, A., Ma, L. M., Feigh, K., and Bolton, M. L. (2015). A formal approach to modeling and analyzing human taskload in simulated air traffic

scenarios. In Proceedings of the IEEE International Conference on Complex Systems Engineering, 6 pages. Piscataway: IEEE.

Ma, L., Houser, A., Feigh, K., and Bolton, M.L. (n.d.) An analysis of air traffic management concepts of operation using simulation and formal

verification. Under review with the American Institute of Aeronautics and Astronautics (AIAA).

Published and planned literature

‘-

72

Published articles:
Houser, A., Ma, L., Feigh, K., and Bolton, M.L. (2017). Using formal methods to reason about taskload and resource conflicts in simulated air traffic

scenarios. Innovations in Systems and Software Engineering, 14(1), pp. 1-14. DOI 10.1007/s11334-017-0305-2.

Bolton, M. L., Zheng, X., Molinaro, K., Houser, A., and Li, M. (2016). Improving the scalability of formal human-automation interaction verification

analyses that use task analytic models. Innovation in Systems and Software Engineering, 13(1), pp. 1-17. DOI 10.1007/s11334-016-0272-z.

Articles under review:

Ma, L., Houser, A., Feigh, K., and Bolton, M.L. (n.d.) An analysis of air traffic management concepts of operation using simulation and formal

verification. Under review with the American Institute of Aeronautics and Astronautics (AIAA).

Articles in preparation:

Houser, A., Bolton, M.L., Bisantz, A.M., and Zhuang, J. (n.d.) Discovering unanticipated human-automation interaction in cybersecurity using formal

methods techniques.

Published conference papers:
Houser, A., and Bolton, M.L. (2017). Formal mental models for inclusive privacy and security. In Proceedings of the Thirteenth Symposium on

Usable Privacy and Security (SOUPS), Santa Clara CA.

Houser, A., Ma, L. M., Feigh, K., and Bolton, M. L. (2015). A formal approach to modeling and analyzing human taskload in simulated air traffic

scenarios. In Proceedings of the IEEE International Conference on Complex Systems Engineering, 6 pages. Piscataway: IEEE.

Published and planned literature

‘-

73

Thank you for attending!

adam.m.houser@gmail.com

@neutrinos4all

appliedcaffeine.org

‘-

74

Reserve Slides

‘-

75

Norman on mental models

Adapted from Norman (1983, 2007)

‘-

76

Generic formulation:
Stepwise overview

‘-

77

Generic formulation of the method

‘-

78

Generic formulation of the method

‘-

79

Generic formulation of the method

‘-

80

Generic formulation of the method

‘-

81

Generic formulation of the method

‘-

82

Generic formulation of the method

‘-

83

Method Architecture

‘-

84

Formal Model Code

‘-

85

actionPerm IN IF action = change_ObjectPermissions OR action = create_Bucket OR action =

change_BucketPermissions

THEN {x : permissionSetting | NOT (x.public AND isPrivate?(x))}

ELSE {x : permissionSetting | (NOT x.public) AND isPrivate?(x)}

ENDIF;

isPublic?(perm : permissionSetting) : BOOLEAN = perm.public AND (perm.read OR perm.write OR

perm.readPermissions OR perm.writePermissions);

isPrivate?(perm : permissionSetting) : BOOLEAN = NOT perm.read AND NOT perm.write AND NOT

perm.readPermissions AND NOT perm.writePermissions;

The Action Generator module

‘-

86

[] action = create_Object AND bucketExists AND NOT objectExists -->

objectExists' = TRUE;

objectEncryption' = IF actionEnc = none_Option

THEN bucketEncryption

ELSE actionEnc

ENDIF;

objectACL' = actionPerm;

[] action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->

thinkObjectExists' = TRUE;

thinkObjectEncryption‘ = actionEnc;

thinkObjectACL' = actionPerm;

The System and User modules: Example 1

‘-

87

The System and User modules: Example 2

softwareRead = IF objectExists AND objectACL.public AND (objectACL.read OR

objectACL.readPermissions OR objectACL.writePermissions)

THEN insecure

ELSE secure

ENDIF;

userRead = IF thinkObjectExists AND thinkObjectACL.public AND (thinkObjectACL.read OR

thinkObjectACL.readPermissions) AND thinkObjectEncryption = none_Option

THEN vulnerable

ELSE safe

ENDIF;

‘-

88

The Comparator module

falseVulnerabilityReadMM = (userRead = vulnerable AND softwareRead = secure);

falseVulnerabilityWriteMM = (userWrite = vulnerable AND softwareWrite = secure);

falseSafetyReadMM = (userRead = safe AND softwareRead = insecure);

falseSafetyWriteMM = (userWrite = safe AND softwareWrite = insecure);

‘-

89

• Specification-based model checking finds one path to failure; could be others

• Investigated method of formulating specifications tailored to find scenarios in results

Limitations

Authenticated User Mismatch

‘-

90

Phishing Model
Validation

‘-

91

Validation using real-world data

‘-

92

Validation using real-world data

‘-

93

Ashok, I. (2017, December 1). National credit federation data leak: Over 100gb of sensitive customer data was left exposed online. International Business Times. Retrieved from http://www.ibtimes.co.uk/national-credit-federation-

data-leak-over-100gb-sensitive-customer-data-was-left-exposed-online-1649709

Baier, C., & Katoen, J. P. (2008). Principles of model checking. MIT press.

Blythe, J., & Camp, L. J. (2012). Implementing mental models. In 2012 IEEE Symposium on Security and Privacy Workshops (SPW) (p. 86-90).

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to evaluate human-automation interaction: A review. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3), 488-503.

Cameron, D. (2017, May 31). Top defense contractor left sensitive pentagon files on amazon server with no password. Gizmodo. Retrieved from https://gizmodo.com/top-defense-contractor-left-sensitive-pentagon-files-on-

1795669632

Camp, L. J. (2004). Mental models of computer security. Financial Cryptography, 3110, 106-111.

Camp, L. J. (2009). Mental models of privacy and security. IEEE Technology and Society Magazine, 28(3), 37-46.

Cofense. (2016). Enterprise Phishing Susceptibility and Resiliency Report (Tech. Rep.). PhishMe. Retrieved from https://cofense.com/enterprise-phishing-susceptibility-report/

Cofense. (2017). Enterprise Phishing Susceptibility and Defense Report (Tech. Rep.). PhishMe. Retrieved from https://cofense.com/whitepaper/enterprise-phishing-resiliency-and-defense-report/

Collett, S. (2014, May 21). Five new threats to your mobile device security. CSO Online. Retrieved from http://www.csoonline.com/article/2157785/data-protection/five-new-threats-to-your-mobile-device-security.html

Craik, K. (1943). The Nature of Explanation. Cambridge University Press.

D’Andre, R. (1987). A folk model of the mind. In Cultural Models in Language and Thought (p. 112-148).

Degani, A., Shafto, M., & Kirlik, A. (1999). Modes in human-machine systems: Constructs, representation, and classification. The International Journal of Aviation Psychology, 9(2), 125-138.

Degani, A., & Heymann, M. (2002). Formal verification of human-automation interaction. Human Factors, 44(1), 28-43.

References

http://www.ibtimes.co.uk/national-credit-federation-data-leak-over-100gb-sensitive-customer-data-was-left-exposed-online-1649709
https://gizmodo.com/top-defense-contractor-left-sensitive-pentagon-files-on-1795669632
https://cofense.com/enterprise-phishing-susceptibility-report/
https://cofense.com/whitepaper/enterprise-phishing-resiliency-and-defense-report/
http://www.csoonline.com/article/2157785/data-protection/five-new-threats-to-your-mobile-device-security.html

‘-

94

de Kleer, J., & Brown, J. S. (1981). Mental models of physical mechanisms and their acquisition. In Cognitive Skills and their Acquisition (p. 285-309). Erlbaum: Hillsdale, NJ.

Dekker, S., & Hollnagel, E. (2004). Human factors and folk models. Cognition, Technology, and Work, 6, 79-86.

FBI: Cyber Crime. (2016). Retrieved 15 February 2017, from https://www.fbi.gov/investigate/cyber

Gartner. (2015, Sep 23). Gartner says worldwide information security spending will grow almost 4.7 percent to reach $75.4 billion in 2015 (Tech. Rep.). Retrieved from https://www.gartner.com/newsroom/id/3135617

Juniper Research. (2015, May 12). Cybercrime will cost businesses over $2 trillion by 2019 (Tech. Rep.). Retrieved from https://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion

Kumaraguru, P., Cranshaw, J., Acquisti, A., Cranor, L., Hong, J., Blair, M. A., & Pham, T. (2009). School of phish: a real-world evaluation of anti-phishing training. In Proceedings of the 5th symposium on usable privacy and

security (p. 3).

Morgan, S. (2016, Mar 9). Worldwide cybersecurity spending increasing to $170 billion by 2020. Forbes. Retrieved from http://www.forbes.com/sites/stevemorgan/2016/03/09/worldwide-cybersecurity-spending-increasing-to-

170-billion-by-2020/#7cde23d576f8

Newman, L. H. (2017, June 19). The scarily common screw-up that exposed 198 million voter records. Wired. Retrieved from https://www.wired.com/story/voter-records-exposed-database/

Norman, D. A. (1983). Some observations on mental models. In Mental Models (p. 7-14). Erlbaum: Hillsdale, NJ.

Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. Basic Books.

Oishi, M., Hwang, I., & Tomlin, C. (2003). Immediate observability of discrete event systems with application to user-interface design. In Proceedings of the 42nd IEEE Conference on Decision and Control, 2003 (Vol. 3, p. 2665-

2672).

O’Sullivan, D. (2017, November 28). Black box, red disk: How top secret nsa and army data leaked online. UpGuard. Retrieved from https://www.upguard.com/breaches/cloud-leak-inscom

References

https://www.fbi.gov/investigate/cyber
https://www.gartner.com/newsroom/id/3135617
https://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion
http://www.forbes.com/sites/stevemorgan/2016/03/09/worldwide-cybersecurity-spending-increasing-to-170-billion-by-2020/#7cde23d576f8
https://www.wired.com/story/voter-records-exposed-database/
https://www.upguard.com/breaches/cloud-leak-inscom

‘-

95

Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L. F., & Downs, J. (2010). Who falls for phish?: a demographic analysis of phishing susceptibility and effectiveness of interventions. In Proceedings of the SIGCHI conference on

human factors in computing systems (p. 373-382).

Siadati, H., Palka, S., Siegel, A., & McCoy, D. (2017). Measuring the effectiveness of embedded phishing exercises. In 10th USENIX workshop on cyber security experimentation and test (CSET 17).

Wash, R. (2010). Folk models of home computer security. In Proceedings of the Sixth Symposium on Usable Privacy and Security (SOUPS) 2010 (p. 11).

Whittaker, Z. (2017, July 12). Millions of verizon customer records exposed in security lapse. InfoSecurity Magazine. Retrieved from http://www.zdnet.com/article/millions-verizon-customer-records-israeli-data/

References

http://www.zdnet.com/article/millions-verizon-customer-records-israeli-data/

