Mental Models for Cybersecurity

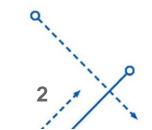
A Formal Methods Approach

Adam M. Houser May 25, 2018

Committee: Matthew L. Bolton, Ph.D. (Chair); Ann M. Bisantz, Ph.D.; Jun Zhuang, Ph.D.

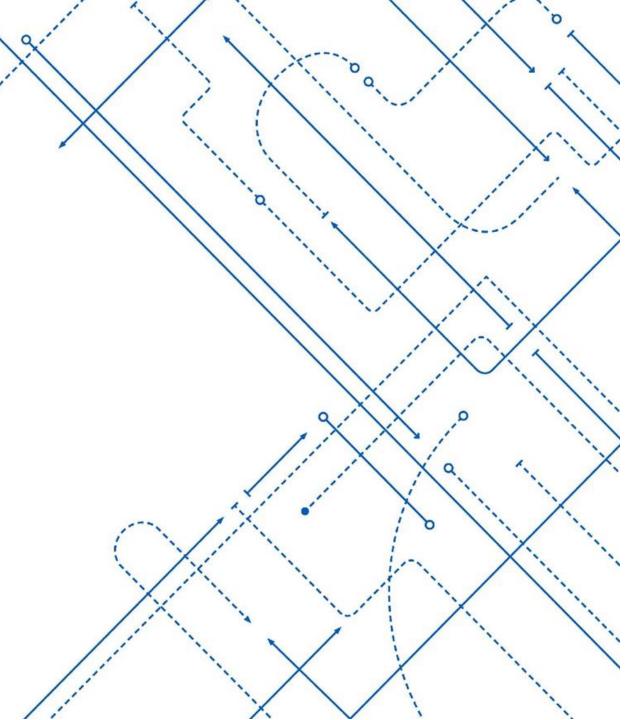
University at Buffalo The State University of New York

Agenda


Motivation and brief backgrounders on relevant topics

Overview of the method

Use case 1: Configuration errors in Amazon cloud storage

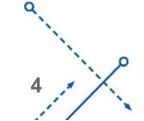

Use case 2: User actions when receiving phishing emails

Discussion and targets for future work

Motivating the Dissertation

Why formal methods in cybersecurity?

As a domain area, cybersecurity has become a critical global concern


- Nation-state cyberattacks, ransomware, global DDoS, crime (FBI: Cyber Crime, 2016)
- Threat actors turning to human exploits

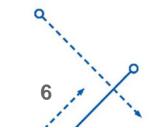
One promising approach: explore cyber through mental models and HAI

- Address not only "what" humans do, but "why" as well
- Understand how these misunderstandings can lead to vulnerabilities, breaches, system failure

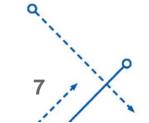
Formal methods offer techniques for discovering these events

- Very good at discovery of rare, unanticipated conditions (exhaustive search, counterexample traces)
- Useful, illuminating synergistic intersection of these topics

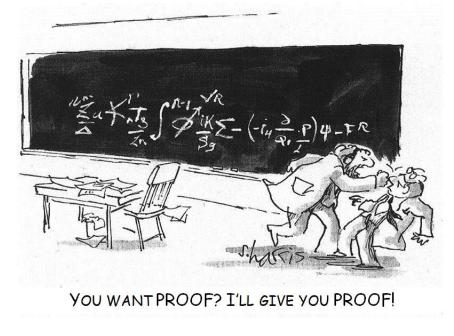
Background: Cybersecurity

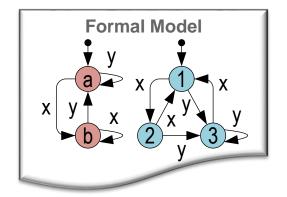

- Security: \$75 billion industry in 2015, projected \$170 billion by 2020 (Gartner, 2015; Morgan, 2016)
- Crime: \$400 billion in theft and loss in 2015, projected \$2 to \$3 trillion by 2020 2021 (Juniper Research, 2015)
- Security investments have made "hacking" more difficult (Collet, 2014)
 - Gone are the days of Hollywood-style exploits
 - Mr. Robot: accurate but uncommon
- Humans as critical linchpins in the cyber kill chain
 - Phishing for credential theft
 - Malware for remote access
 - Ransomware for extortion

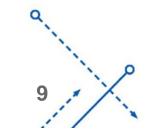
Background: Mental models


- To bolster end-user cyber defenses: training
 - Mixed empirical data on phishing clickthrough and recidivism (repeat offenders) (Kumaraguru, et al., 2009; Sheng, et al., 2010; Siadati, et al., 2017)
- Mental models may help explore user-based exploits more deeply
 - A "small-scale" mental representation of some aspect of the world (Craik, 1943)
 - Describes functionality of the target system (Norman, 1983, 2013)
 - Often incomplete, unscientific, can harbor "superstitious beliefs" about the system, but not "wrong"
 - Runnable forwards and backwards (de Kleer and Brown, 1981; Norman, 1983)

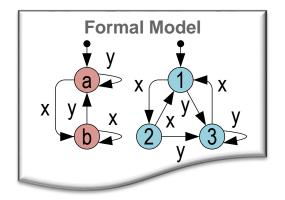
Background: Folk models

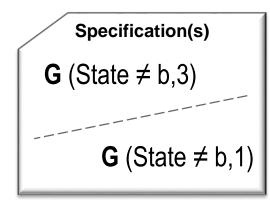

- What are folk models?
 - Phenomenological models shared among similar members of a culture (D'Andre, 1987)
 - Useful, but potentially immune to falsification, posit without measurement (Dekker and Hollnagel, 2004)
- Existing work in folk modeling of user computer threats, user responses, security devices (Wash, 2010; Kauer, 2013)
 - Heavily reliant on metaphor, lack runnability (Camp, 2004, 2009)
 - Some effort to add rigor (Blythe and Camp, 2012)
- Folk models are still useful, warts and all
 - Contain valuable insight on user security responses
 - High face validity of response data

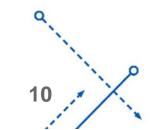



Background: Formal methods

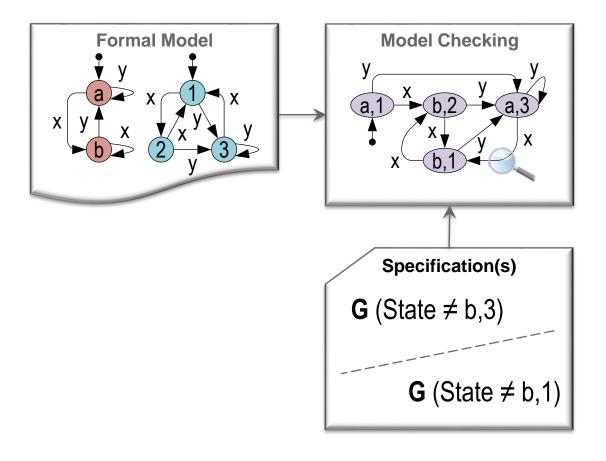
- Formal methods: mathematical languages and techniques for modeling, specifying, and verifying system models and their properties (Baier and Katoen, 2008; Bolton, 2013)
- Model checking: highly-automated approach to formal verification
- Mathematical proof that condition does or does not exist (exhaustive search, counterexamples)

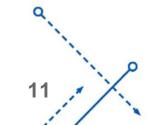


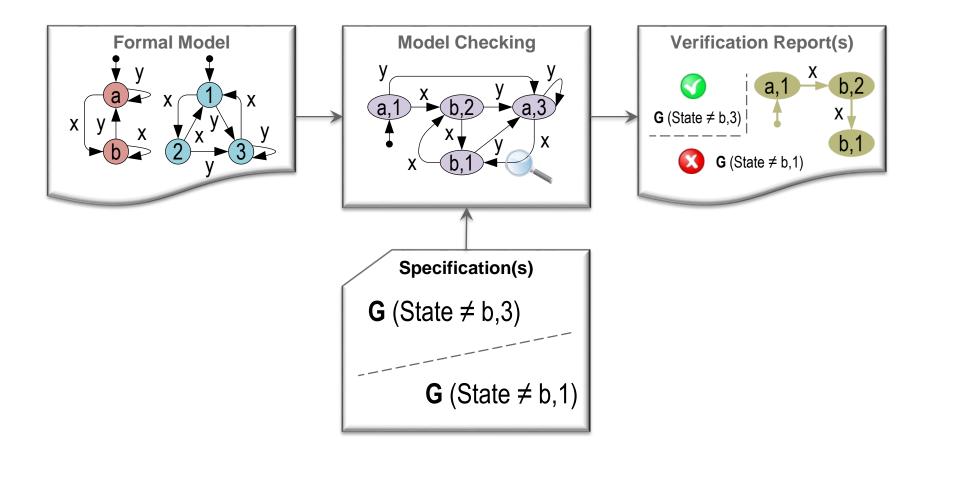


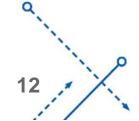


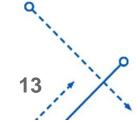
Ο



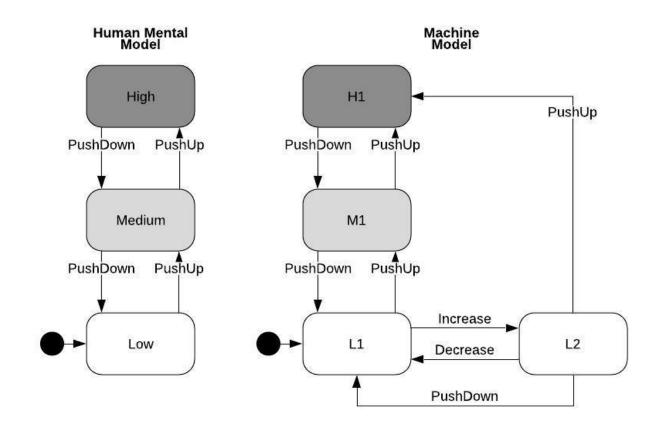


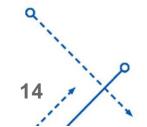

Ο

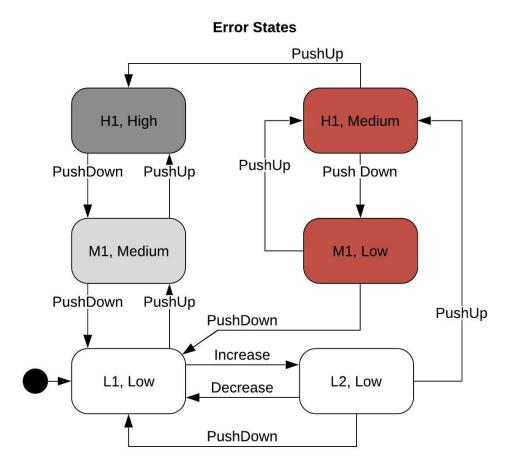


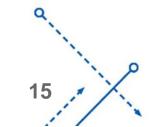


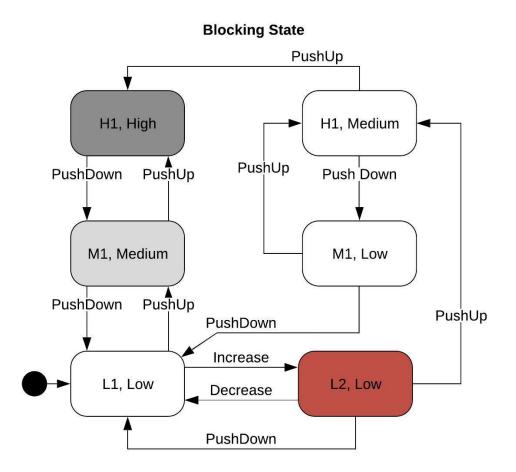
Ο

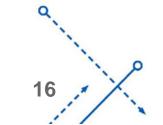

Background: Formal methods


- Mode confusion: mismatch between user mental model of system state and state of actual system
 - Cruise-control systems (Degani, Shafto, and Kirlik, 1999)
 - Aircraft autopilot (Degani and Heymann, 2002)
 - Aircraft auto-land (Oishi et al., 2003)
- Error and blocking states (Degani and Heymann, 2002)
 - States should transition synchronously
 - Error state: user thinks move is legal, machine state is illegal
 - Blocking state: system transition happens or is possible, but user doesn't see it or is unaware of it


Degani: human and machine models



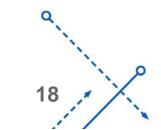

Degani's error states



Degani's blocking state

-0

Research Questions

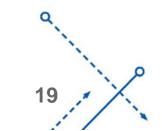


Research Question 1

How can rigorous characterization of **computer user mental models** and their treatment of **cyber threats** help network defenders become more resilient to cyberattacks that exploit human users?

Research Question 2

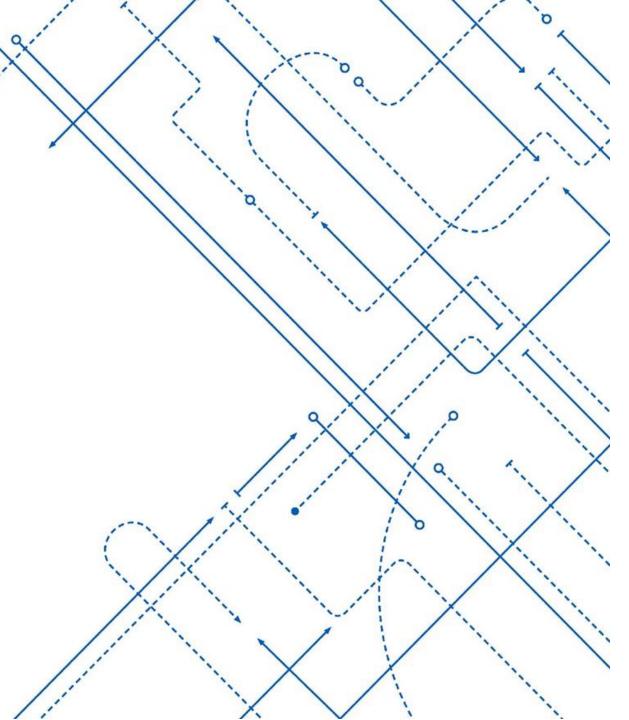
How can **formal methods techniques** be extended to give analysts the ability to **discover and describe real-world security vulnerabilities** that arise from the interaction between user mental models of computer security tools and the tools themselves?


Research Objectives

Establish a rigorous framework for exploring user mental models of computer security risks with formal methods techniques.

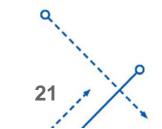
Demonstrate that these risks correspond to vulnerabilities that attackers could potentially exploit in modern computer systems.

Extend our framework to incorporate folk models of cybersecurity risks.


Analyze data collected from multiple sources to validate our modeling approach by discovering potential configuration errors anticipated with our method

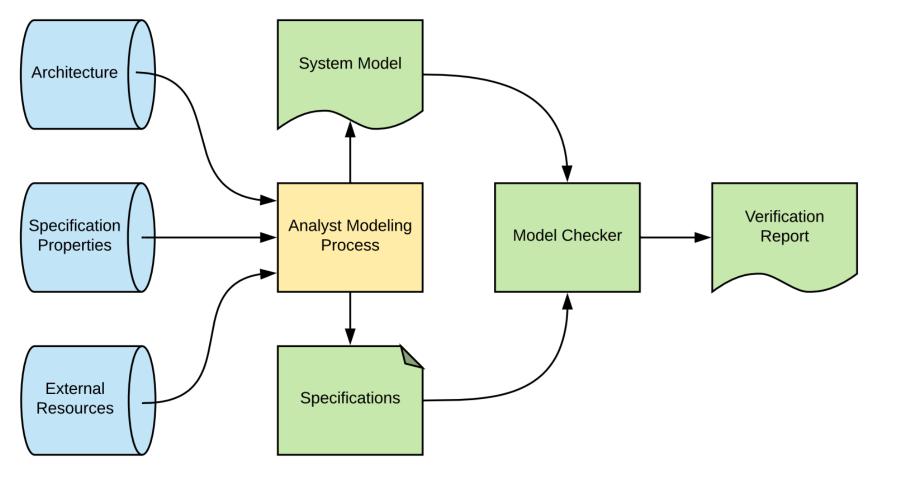
Part I:

Generic Method Formulation

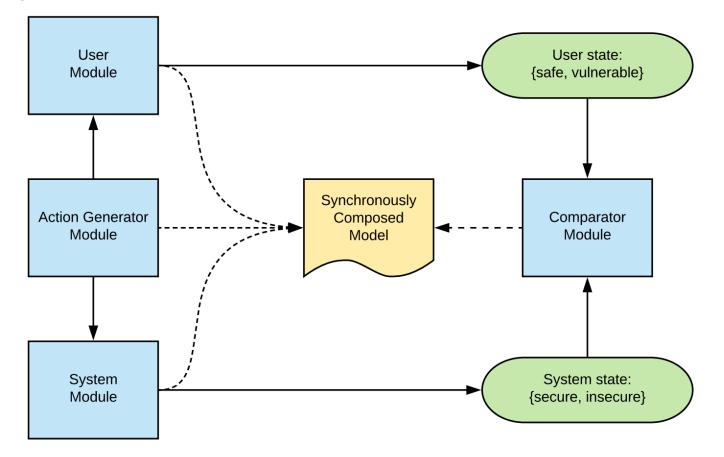

Problem overview

Motivation: user-enabled attacks are a major cybersecurity problem, expected continual growth

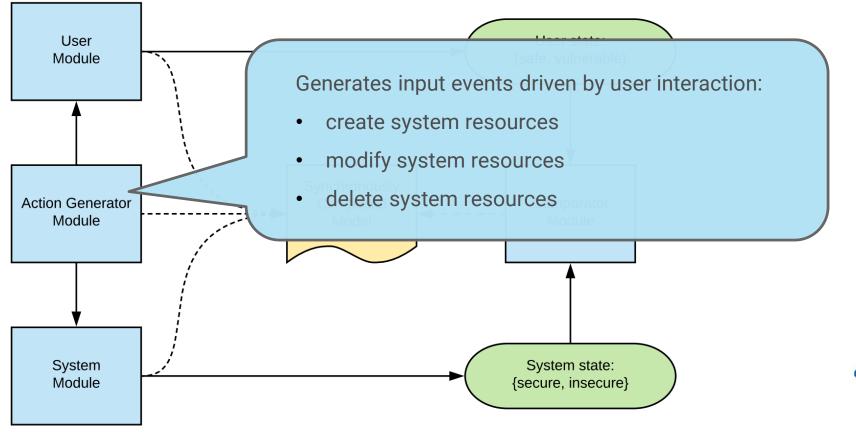
Formulate a framework that:

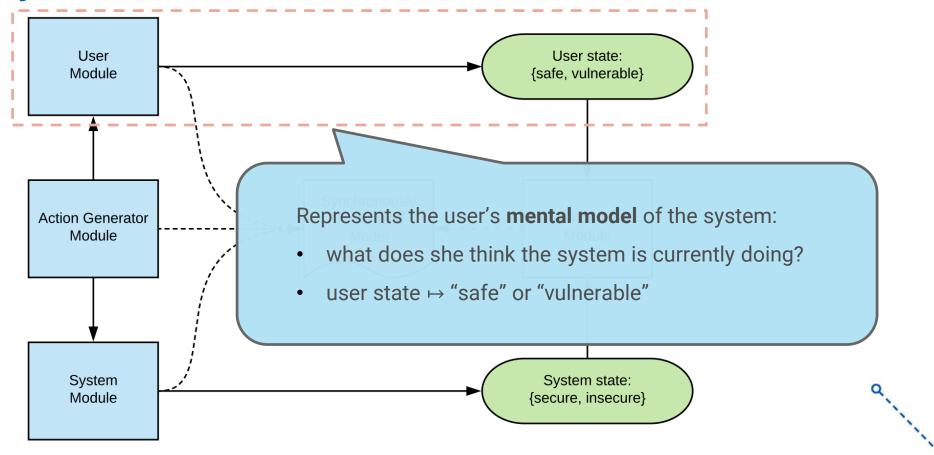

- extends Degani and Heymann (2002)'s architecture to a new domain
- can discover unanticipated cybersecurity "vulnerabilities"
- captures developments in a theoretically-grounded, application-agnostic approach

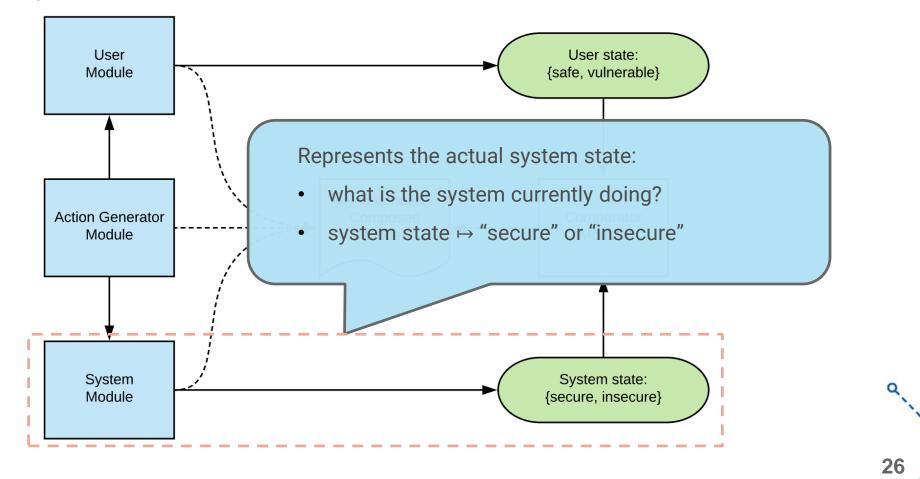
Solution: our Generic Method

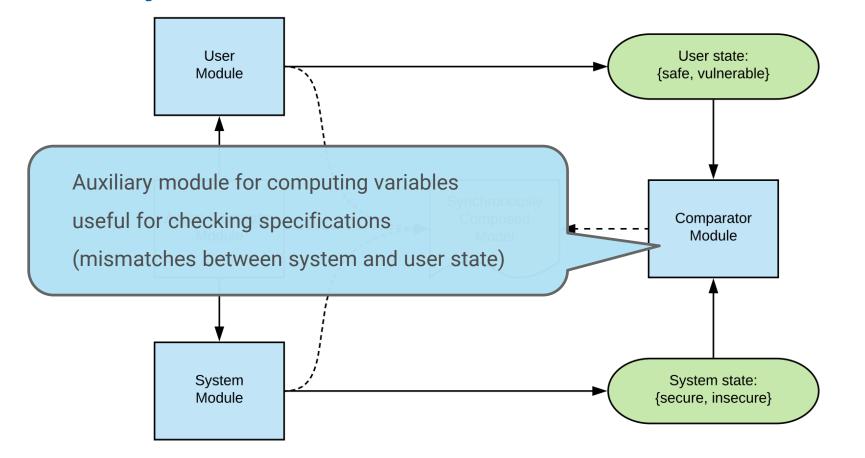


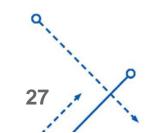
Generic formulation of the method



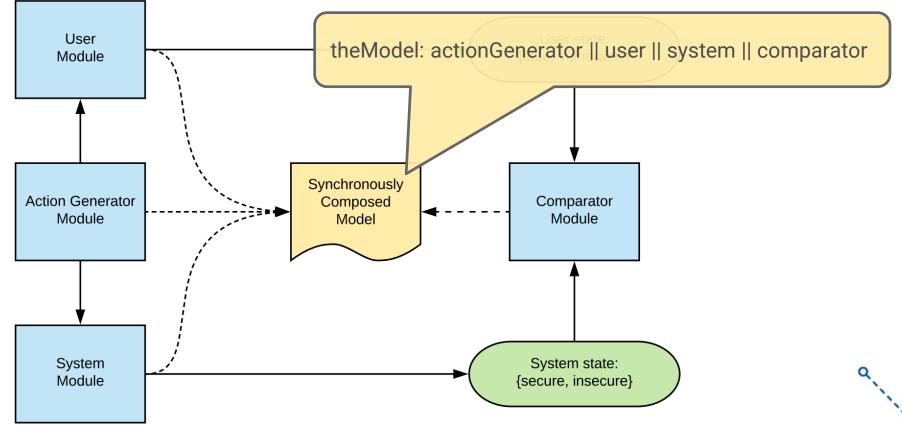






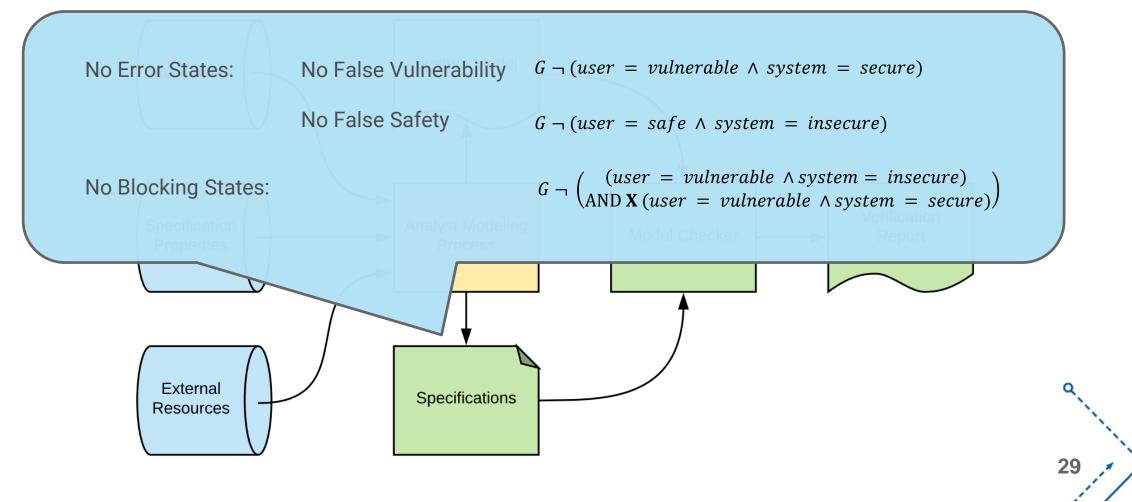


Generic system model



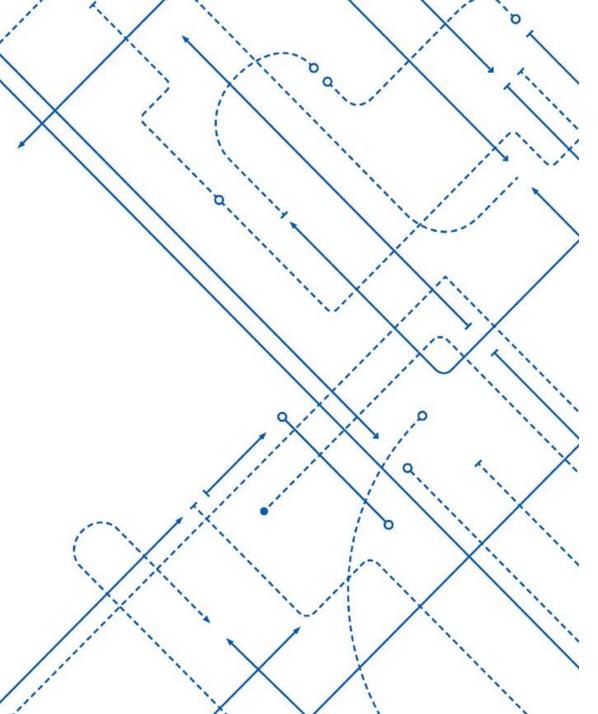
Ο

Generic system model



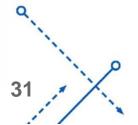
28

Ο



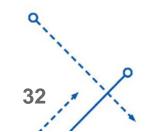
Generic formulation of the method

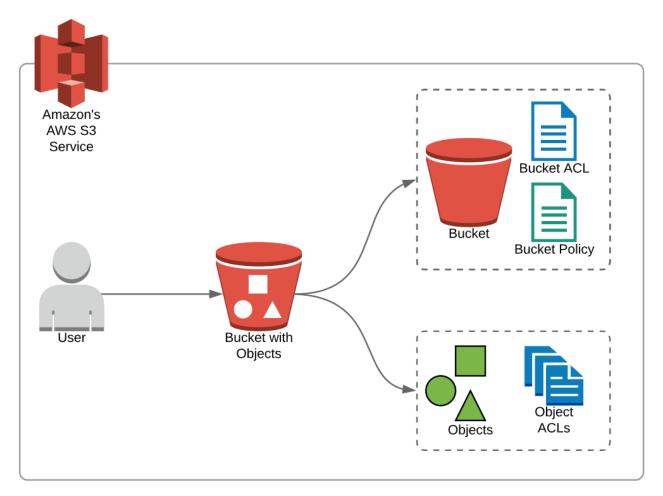
Use case: Amazon Web Services

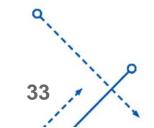


What is AWS?

- Largest single provider of cloud computing and data storage services on the planet
- Range of (131) services, from small (AWS EC2) to very large (AWS Snowmobile)
- Netflix, Hulu, GE Oil and Gas, Kellogg's, Airbnb, NASA, NASDAQ, FICO
 - \$20B in revenue for Amazon in AY 2017
- Pay as you go, so anyone can create a free account
- What could go wrong?




Customer data "fire sales"


- AWS Simple Storage Service, or S3
- Potentially difficult to secure, leaving data unprotected easy targets
- Notable recent events:
 - Analytics company, 198 million voting records (Newman, 2017)
 - BAH, 60K DoD files and passwords (Cameron, 2017)
 - Pentagon, 100GB of contract and sensitive info (O'Sullivan, 2017)
 - Verizon, 14 million customer records (Whittaker, 2017)
 - National Credit Union Federation, 100GB of Social Security, bank accounts, and customer credit reports (Ashok, 2017)

How does S3 work?

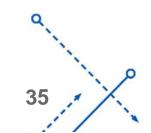
How does an ACL work?

Access for your AWS account

Account ()	List objects ()	Write objects ()	Read bucket permissions ()	Write bucket permissions 🚯
\bigcirc	Yes	Yes	Yes	Yes
Access for other AWS accounts				
+ Add account Delete				
Account ()	ist objects 🚯 🛛 W	/rite objects 🚯	Read bucket permissions 🜖	Write bucket permissions 🕕
Public access				
Group ()	ist objects 🚯 🛛 W	/rite objects 🕚	Read bucket permissions 🚯	Write bucket permissions 🕚
Everyone -				

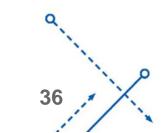
S3 log delivery group

Group 🚯	List objects 🚯	Write objects ()	Read bucket permissions (1)	Write bucket permissions 🚯
Log Delivery		-	-	


34

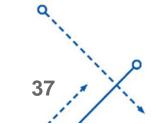
University at Buffalo The State University of New York

How does a policy work?



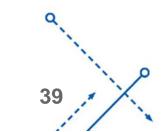
n

What can you do with S3?


- Store files of any type, from personal to corporate (I do)
- Control who can access what with ACLs and policies
- Apply server-side encryption to keep data safe
- Treat like an unlimited Dropbox or file sharing service
- Host static websites (I did)

Our method is well-suited for this use case

- Widespread use among a range of customers
- Security controls are difficult to understand, hard to configure, offer overlapping functionality
- Potentially simple user model, potentially complex system model
 - How will users know if something is in an unsafe state?
 - Will they know how to recover if something bad happens?
- Difficult to anticipate how configuration could compromise security


Analysis and Results

n

Analysis scenario

- A user can take a number of actions with their S3 account
 - Create, modify, or delete resources (bucket and objects)
 - Change encryption settings on resources
 - Change permissions on resources (read, write, readPerms, writePerms)
- Can a user interacting with AWS S3 inadvertently compromise their security through a combination of configuration decisions?

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption:	encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption:	encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
$think {\tt Bucket Encryption}$	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.write OR thinkObjectACL.writePermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;
userRead = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

TRANSITION [

END;

```
action = create Object AND thinkBucketExists AND NOT thinkObjectExists -->
   thinkObjectExists'
                          = TRUE:
   thinkObjectEncryption' = actionEnc;
   thinkObjectACL'
                          = actionPerm;
[] action = delete Object AND thinkObjectExists -->
   thinkObjectExists'
                          = FALSE;
   thinkObjectEncryption' = none Option:
[] action = change ObjectPermissions AND thinkObjectExists -->
   thinkObjectACL'
                          = actionPerm;
[] action = change_ObjectEncryption AND thinkObjectExists -->
   thinkObjectEncryption' = actionEnc;
[] action = create Bucket AND NOT thinkBucketExists -->
   thinkBucketExists'
                          = TRUE:
   thinkBucketEncryption' = actionEnc;
   thinkBucketACL'
                          = actionPerm:
[] action = delete Bucket AND thinkBucketExists -->
   thinkBucketExists'
                          = FALSE:
   thinkBucketEncryption' = none Option;
   thinkObjectExists'
                          = FALSE;
   thinkObjectEncryption' = none Option;
[] action = change BucketPermissions AND thinkBucketExists -->
   thinkBucketACL'
                          = actionPerm:
   thinkObjectACL'
                          = actionPerm;
[] action = change BucketEncryption AND thinkBucketExists -->
   thinkBucketEncryption' = actionEnc;
   thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN
                                none Option ELSE actionEnc ENDIF;
[] ELSE -->
   thinkObjectExists' = thinkObjectExists;
```

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption	encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption:	encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
thinkBucketEncryption	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

...

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND (thinkObjectACL.write OR thinkObjectACL.writePermissions) AND thinkObjectEncryption = none Option THEN vulnerable ELSE safe ENDIF; userRead = IF thinkObjectExists AND thinkObjectACL.public AND (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND thinkObjectEncryption = none Option THEN vulnerable ELSE safe ENDIF;

s -->

Variables describing things the human thinks about the system:

- Whether or not the bucket exists
- How the bucket is encrypted (if at all)
- The bucket's ACL permissions
- Whether or not the object exists
- How the object is encrypted (if at all)
- The object's ACL permissions

UNITRODJECIACE

- actionrenn,

[] action = change BucketEncryption AND thinkBucketExists --> thinkBucketEncryption' = actionEnc; thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN none Option ELSE actionEnc ENDIF;

[] ELSE -->

END;

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption	: encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption	: encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
thinkBucketEncryption	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

...

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.write OR thinkObjectACL.writePermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;
userRead = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
 thinkObjectExists' = TRUE;
 thinkObjectEncryption' = actionEnc;
 thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists --> thinkObjectExists' = FALSE;

Variables describing actions and their associated changes to ACL permissions and encryption

action = delete_Bucket AND thinkBucketExists -->

= FALSE;
= none_Option;
= FALSE;
= none_Option;

- [] action = change_BucketPermissions AND thinkBucketExists -->
 - thinkBucketACL' thinkObjectACL'
- = actionPerm; = actionPerm;

```
[] ELSE -->
```

END;

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption:	encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption:	encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
$think {\tt Bucket Encryption}$	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

...

```
userWrite = IF thinkObjectExists AND thinkObjectACL.public AND
  (thinkObjectACL.write OR thinkObjectACL.writePermissions) AND
  thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;
userRead = IF thinkObjectExists AND thinkObjectACL.public AND
  (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND
  thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;
```

TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
 thinkObjectExists' = TRUE;
 thinkObjectEncryption' = actionEnc;
 thinkObjectACL' = actionPerm;

Variables representing what the human thinks about the Read and Write state of the system: safe or vulnerable

[] action = delete_Bucket AND thinkBucketExists -->
 thinkBucketExists' = FALSE;
 thinkBucketEncryption' = none_Option;
 thinkObjectExists' = FALSE;
 thinkObjectEncryption' = none_Option;

- [] action = change_BucketPermissions AND thinkBucketExists -->
 - thinkBucketACL' thinkObjectACL'
- = actionPerm; = actionPerm;

```
[] ELSE -->
```

END;

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption:	encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption:	encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
thinkBucketEncryption	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

...

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.write OR thinkObjectACL.writePermissions) A 30
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe
userRead = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.read OR thinkObjectACL.readPermissions) AN
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe

TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
 thinkObjectExists' = TRUE;
 thinkObjectEncryption' = actionEnc;
 thinkObjectACL' = actionPerm;

[] action = delete_Object AND thinkObjectExists -->
 thinkObjectExists' = FALSE;
 thinkObjectEncryption' = none_Option;

[] action = change_ObjectPermissions AND thinkObjectExists --> thinkObjectACL' = actionPerm;

[] action = change_ObjectEncryption AND thinkObjectExists --> thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists --> thinkBucketExists' = TRUE; thinkBucketEncryption' = actionEnc; thinkBucketACL' = actionPerm;

The initial mental model

thinkObjectExists' = FALSE; thinkObjectEncryption' = none Option;

- No bucket or object exists
- No encryption is set
- No assumptions are made
 about permissions

state:

Guarded transitions in mental model state based

on actions

BOOLEAN

	,	1 0
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

INITIALIZATION

thinkBucketExists	= FALSE;
thinkObjectExists	= FALSE;
thinkBucketEncryption	= none_Option;
thinkObjectEncryption	= none_Option;

DEFINITION

...

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.write OR thinkObjectACL.writePermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;
userRead = IF thinkObjectExists AND thinkObjectACL.public AND
 (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND
 thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists --->
thinkObjectExists' = TRUE;
thinkObjectEncryption' = actionEnc;
thinkObjectACL' = actionPerm;
[] action = delete_Object AND thinkObjectExists --->
thinkObjectExists' = FALSE;
thinkObjectEncryption' = none Option;

- [] action = change_ObjectPermissions AND thinkObjectExists --> thinkObjectACL' = actionPerm;
- [] action = change_ObjectEncryption AND thinkObjectExists -->
 thinkObjectEncryption' = actionEnc;

[] action = create_Bucket AND NOT thinkBucketExists --> thinkBucketExists' = TRUE; thinkBucketEncryption' = actionEnc; thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
 thinkBucketExists' = FALSE;
 thinkBucketEncryption' = none_Option;
 thinkObjectExists' = FALSE;
 thinkObjectEncryption' = none_Option;

- [] action = change_BucketPermissions AND thinkBucketExists --> thinkBucketACL' = actionPerm:
 - thinkObjectACL' = actionPerm;

[] ELSE -->

END;

LOCAL	thinkBucketExists:	BOOLEAN
LOCAL	thinkBucketEncryption	encryptionSetting
LOCAL	thinkBucketACL:	permissionSetting
LOCAL	thinkObjectExists:	BOOLEAN
LOCAL	thinkObjectEncryption:	encryptionSetting
LOCAL	thinkObjectACL:	permissionSetting
INPUT	action:	userAction
INPUT	actionPerm:	permissionSetting
INPUT	actionEnc:	encryptionSetting
OUTPUT	userWrite:	userState
OUTPUT	userRead:	userState

NITIALIZATION

...

Example: Changing the bucket permissions sets the bucket's and the object's permissions to the new permissions values

userWrite = IF thinkObjectExists AND thinkObjectACL.public AND

(thinkObjectACL.write OK thinkObjectACL.writePermissions) AND thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF; userRead = IF thinkObjectExists AND thinkObjectACL.public AND (thinkObjectACL.read OR thinkObjectACL.readPermissions) AND thinkObjectEncryption = none_Option THEN vulnerable ELSE safe ENDIF;

TRANSITION [

action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->
 thinkObjectExists' = TRUE;
 thinkObjectEncryption' = actionEnc;
 thinkObjectACL' = actionPerm;
Il action = dolete_Object_AND thinkObjectExists_>

[] action = delete_Object AND thinkObjectExists -->
 thinkObjectExists' = FALSE;
 thinkObjectEncryption' = none_Option;

- [] action = change_ObjectPermissions AND thinkObjectExists --> thinkObjectACL' = actionPerm;
- [] action = change_ObjectEncryption AND thinkObjectExists --> thinkObjectEncryption' = actionEnc;

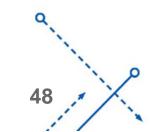
[] action = create_Bucket AND NOT thinkBucketExists --> thinkBucketExists' = TRUE; thinkBucketEncryption' = actionEnc; thinkBucketACL' = actionPerm;

[] action = delete_Bucket AND thinkBucketExists -->
 thinkBucketExists' = FALSE;
 thinkBucketEncryption' = none_Option;
 thinkObjectExists' = FALSE;
 thinkObjectEncryption' = none_Option;

[] action = change_BucketPermissions AND thinkBucketExists --> thinkBucketACL' = actionPerm; thinkObjectACL' = actionPerm;

[] ELSE -->

END;


nental MODULE = BEGIN	 TRANS	ΙΠΙΟΝ [
The hu	Iman's perception about Rea	ad and Write safety:
IF the object exists and:	it has public permissions, the object can be written o it has no encryption	or its permissions can be written
THEN then writing is Vulne	erable OTHERWISE writing is	t <mark>Safe</mark> ectACL = actionPerm;
IF the object exists and: THEN then reading is <u>Vuln</u>	it has public permissions, the object can be read or i it has no encryption <u>erable</u> OTHERWISE reading	ts permissions can be read is <u>Safe</u>
thinkBucketEncryption = none_Option; thinkBucketEncryption = none_Option;		thinkBucketExists = FALSE; thinkBucketEncryption' = none_Option; thinkObjectExists' = FALSE; thinkObjectEncryption' = none_Option;
DEFINITION userWrite = IF thinkObjectExists AND thinkO (thinkObjectACL.write OR thinkObjectACL thinkObjectEncryption = none_Option TH userRead = IF thinkObjectExists AND thinkO (thinkObjectACL.read OR thinkObjectACL. thinkObjectEncryption = none_Option TH 	writePermissions) AND EN vulnerable ELSE safe ENDIF; bjectACL.public AND readPermissions) AND	<pre>in actionPerm; actionPerm; actionPerm; actionPerm; actionPerm; actionPerm; actionPerm; actionPerm; in = change_BucketEncryption AND thinkBucketExists> thinkBucketEncryption' = actionEnc; thinkObjectEncryption' = IF thinkObjectExists = FALSE THEN none_Option ELSE actionEnc ENDIF; LSE> thinkObjectExists' = thinkObjectExists;</pre>

Results

Table 4.1: Amazon AWS S3 Use Case Verification Results

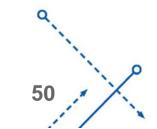
	False Vulnerability			Fa	alse Safety		Blocking			
	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result	
Read	932,580	0.12	×	932,580	0.12	×	3,229,908	0.61	~	
Write	932,580	0.12	×	932,580	0.11	×	3,188,724	0.36	~	

Note. A ✓ indicates a proof was returned, while a X indicates a counterexample was returned.

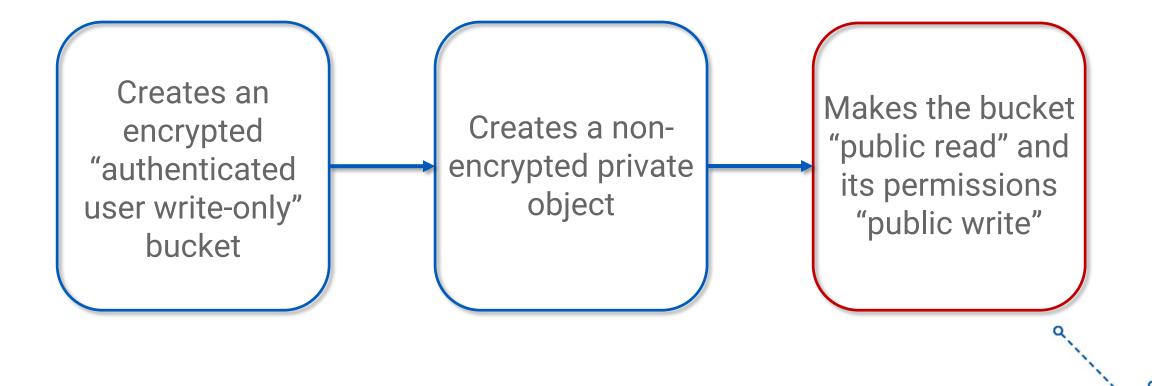
Results

Table 4.1: Amazon AWS S3 Use Case Verification Results

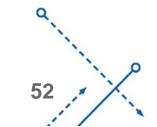
0


49

	False	False Vulnerability					В	Blocking		
	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result	
Read	932,580	0.12	×	932,580	0.12	×	3,229,908	0.61	~	
Write	932,580	0.12	X	932,580	0.11		3,188,724	0.36	~	
<i>Note.</i> A ✓ indicates a provinwas returned, while a X indicates a counterexample eturned.										
proper Un of Perm	derstanding iissions							Jnderstandir cryption	ng	

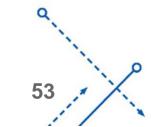

Results: False Security Read Mismatch

Results: False Vulnerability Write Mismatch

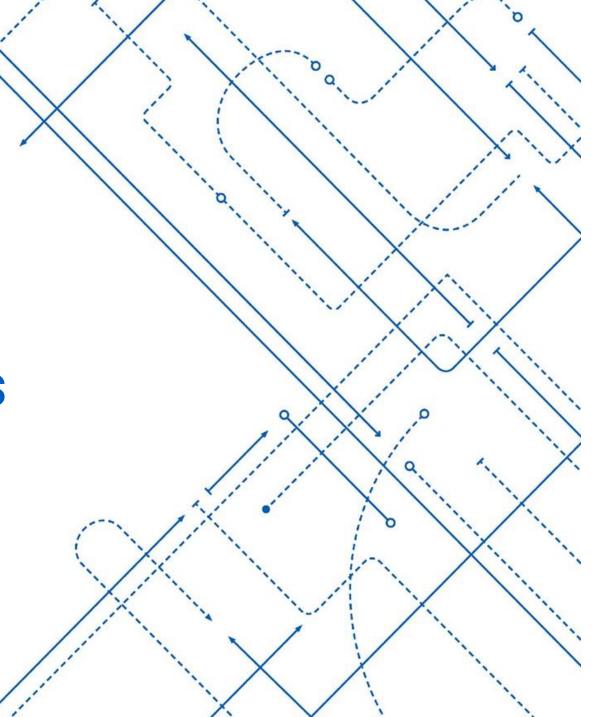


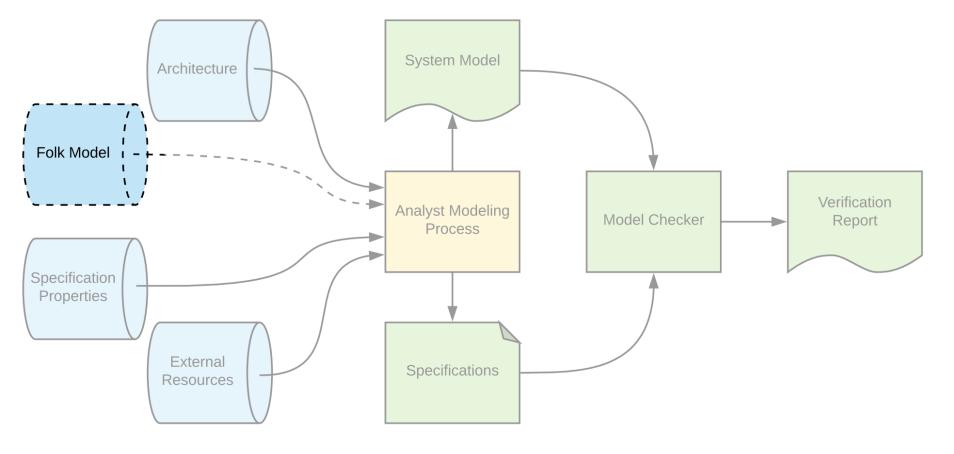
51

Validation


- We recreated all four scenarios within an AWS S3 account
- All represent sensible scenarios possible with a minimum of clicks and steps
- Permissions mismatches could explain majority of scenarios identified in press coverage about AWS breaches (more investigation needed)

Potential limitations


- Our method only uses a generically-instantiated mental model
- Lacks the capability to determine effects of different mental models on cybersecurity
- Addressed in second part of the dissertation


Part II:

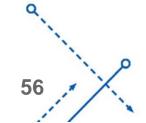
Integrating folk models of cybersecurity vulnerabilities

Extending the method

Extending the method: Folk model input

	Computer security advice		Folk	models	
		Graffiti	Burglar	Big Fish	Contractor
1.	Use anti-virus software	ø	3	1	1
2.	Keep anti-virus software updated	ø	Ø	Ø	1
3.	Regularly scan computer with anti-virus	ø	Ø	Ø	1
4.	Use security software (firewall, etc.)	2	2	2	1
5.	Don't click on attachments	3	3	Ø	Ø
6.	Be careful downloading from websites	2	2	1	1
7.	Be careful which websites you visit	3	3	2	3
8.	Disable scripting in web and mail	ø	Ø	Ø	1
9.	Use good passwords	2	Ø	2	1
10.	Make regular backups	3	1	1	1
11.	Keep patches up-to-date	3	3	1	1
12.	Turn off computer when not in use	2	3	1	1

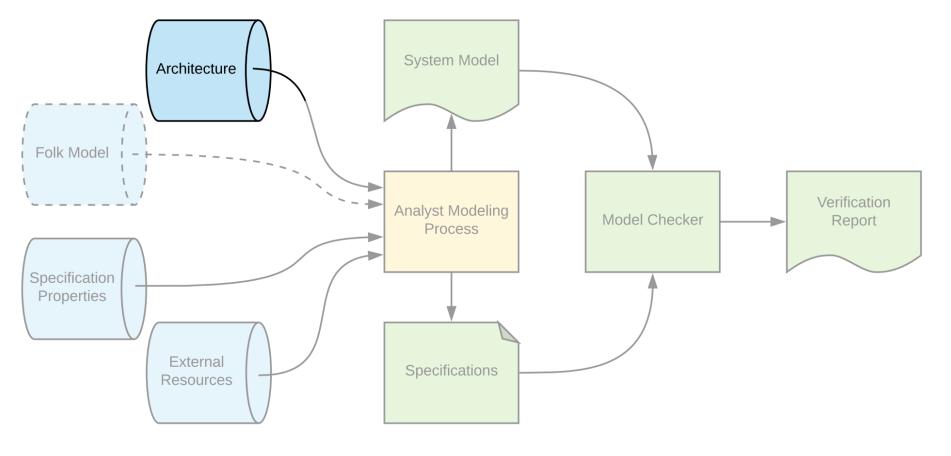
Table 5.1: Folk models and adherence to security advice


3: "It is very important to follow this advice."

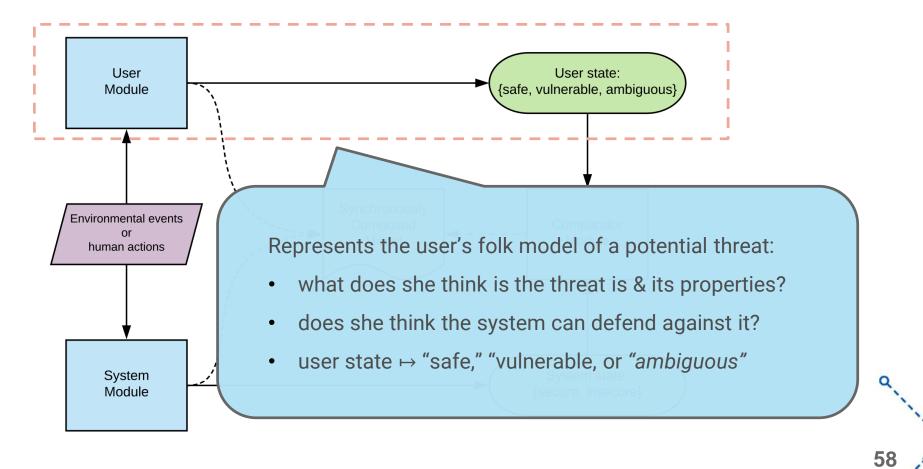
2: "Following this advice might help, but it isn't all that important to do."

1: "It is not necessary to follow this advice."

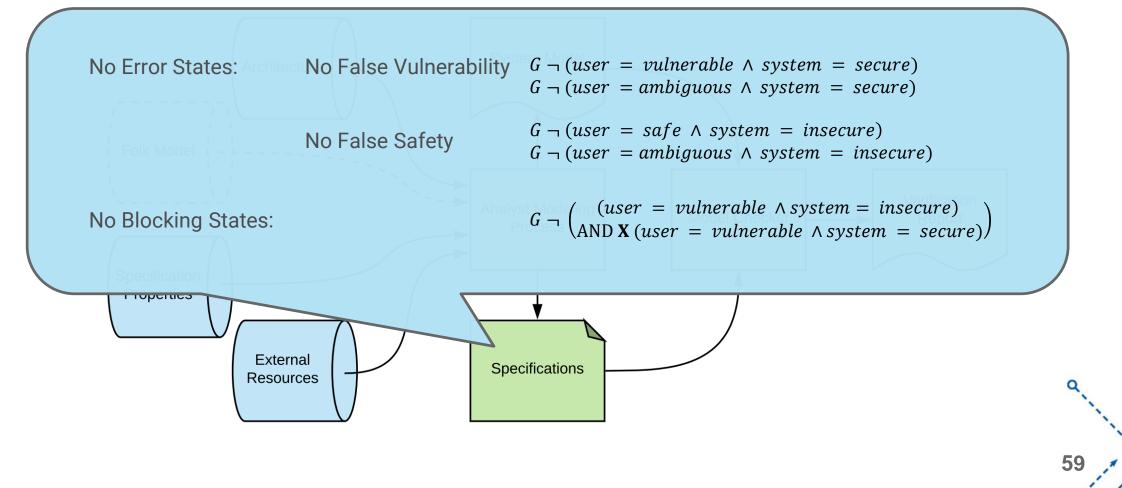
 \varnothing : "This model has nothing to say about this advice, or there is insufficient data from interviews to determine an opinion."


Note. A summary of survey user data regarding the importance of following security advice with respect to their folk models of hackers. Descriptions of the importance levels appearing in quotations has been taken directly from Wash, 2010, p. 10, and the remainder of the table has been adapted.

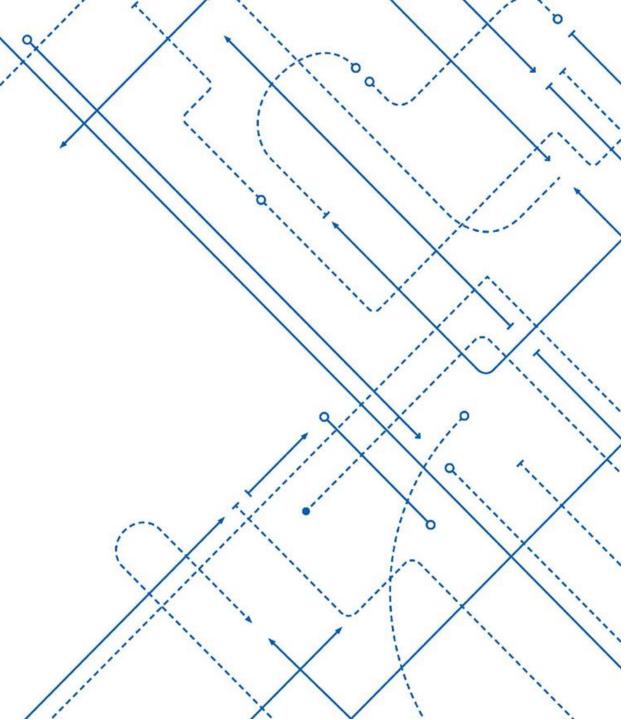
o



Extending the method

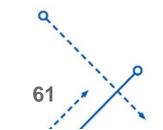


Extending the method: Updated architecture



Extending the method: Updated architecture

Use case: Phishing attacks

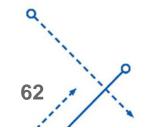


Analysis scenario

- Phishing: sending deceptive emails with the intent of gathering personal information, credentials, installing malware, or other malicious purposes
- Email is received that has one of three "threat types": link, download, and attachment
- Users respond to them in a way informed by their folk model of the perceived threat:
 Click a website link
 Download from website
 Open attachment
 Toggle ad blocker
 Patch their software
 No Action

Table 5.1: Folk models and adherence to security advice

Computer security advice		Folk	models	
	Graffiti	Burglar	Big Fish	Contractor
Use anti-virus software	Ø	3	1	1
Keep anti-virus software updated	Ø	Ø	Ø	1
Regularly scan computer with anti-virus	Ø	Ø	Ø	1
Use security software (firewall, etc.)	2	2	2	1
Don't click on attachments	3	3	Ø	ø
Be careful downloading from websites	2	2	1	1
Be careful which websites you visit	3	3	2	3
Disable scripting in web and mail	Ø	Ø	Ø	1
Use good passwords	2	Ø	2	1
Make regular backups	3	1	1	1
Keep patches up-to-date	3	3	1	1
Turn off computer when not in use	2	3	1	1


	Action	Folk models							
		Graffiti	Burglar	Big Fish	Contractor				
	Toggle ad blocker	Depends	Depends	Depends	No Change				
,	Open attachment	Insecure	Insecure	Ambiguous	Ambiguous				
,	Download from website	Depends	Depends	No Change	No Change				
,	Click a website link	Insecure	Insecure	Depends	Insecure				
1	Patch their software	Insecure	Insecure	No Change	No Change				
/ .	No Action	No Change	No Change	No Change	No Change				

3: "It is very important to follow this advice."

2: "Following this advice might help, but it isn't all that important to do."

1: "It is not necessary to follow this advice."

 \varnothing : "This model has nothing to say about this advice, or there is insufficient data from interviews to determine an opinion."

Table 5.1: Folk models and adherence to security advice

Computer security advice		Folk	models	
	Graffiti	Burglar	Big Fish	Contractor
Use anti-virus software	Ø	3	1	1
Keep anti-virus software updated	Ø	Ø	Ø	1
Regularly scan computer with anti-virus	Ø	Ø	Ø	1
Use security software (firewall, etc.)	2	2	2	1
Don't click on attachments	3	3	Ø	ø
Be careful downloading from websites	2	2	1	1
Be careful which websites you visit	3	3	2	3
Disable scripting in web and mail	Ø	Ø	Ø	1
Use good passwords	2	Ø	2	1
Make regular backups	3	1	1	1 /
Keep patches up-to-date	3	3	1	1
Turn off computer when not in use	2	3	1	1

3: "It is very important to follow this advice."

2: "Following this advice might help, but it isn't all that important to do."

1: "It is not necessary to follow this advice."

 \varnothing : "This model has nothing to say about this advice, or there is insufficient data from interviews to determine an opinion."

Action		Folk	models	
	Graffiti	Burglar	Big Fish	Contractor
Toggle ad blocker	Depends	Depends	Depends	No Change
📕 Open attachment	Insecure	Insecure	Ambiguous	Ambiguous
Download from website	Depends	Depends	No Change	No Change
📕 Click a website link	Insecure	Insec	Depends	Insecure
Patch their software	Insecure	Insec	No Change	No Change
No Action	No Change	No Casage	No Change	No Change
IF siteContent = b no change ELSE vulnerable ENDIF	basic AND	software =	secure THE	N

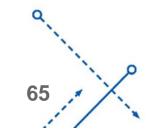
Results: False Vulnerability Mismatches

	Link			Download			Attachment			No Action		
Folk Model	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result
Graffiti	798	0.06	×	816	0.06	×	834	0.06	×	930	0.06	~
Burglar	798	0.07	×	816	0.06	×	834	0.06	×	930	0.07	~
Big Fish	816	0.07	×	978	0.06	~	858, 840	0.07, 0.07	✓●	1002	0.07	~
Contractor	810	0.06	×	978	0.08	~	858, 846	0.06, 0.05	✓●	1002	0.06	~

 Table 5.2: Folk Model-Cross-Attack Verification Results: False Vulnerability Error States with Potential Ambiguity

Note. A \checkmark indicates a generic proof was returned, a \thickapprox indicates a generic counterexample was returned, and a \bigcirc indicates that an "ambiguity" counterexample was returned. Where \bigcirc is absent, an "ambiguity" proof was returned.

64

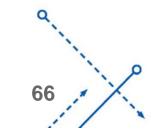


Results: False Safety Mismatches

		Link		Download			Attachment			No Action		
Folk Model	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result
Graffiti	846	0.07	~	834	0.06	×	858	0.06	~	906	0.07	~
Burglar	846	0.06	~	834	0.06	×	858	0.06	~	906	0.08	~
Big Fish	864, 906	0.07, 0.06	X •	930	0.06	×	858, 870	0.06, 0.07	✓●	960	0.06	~
Contractor	846	0.07	~	954	0.07	×	858, 870	0.06, 0.06	✓●	966	0.06	~

Table 5.3: Folk Model-Cross-Attack Verification Results: False Safety Error States with Potential Ambiguity

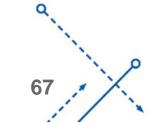
Note. A ✓ indicates a generic proof was returned, a × indicates a generic counterexample was returned, and a ● indicates that an "ambiguity" counterexample was returned. Where ● is absent, an "ambiguity" proof was returned.

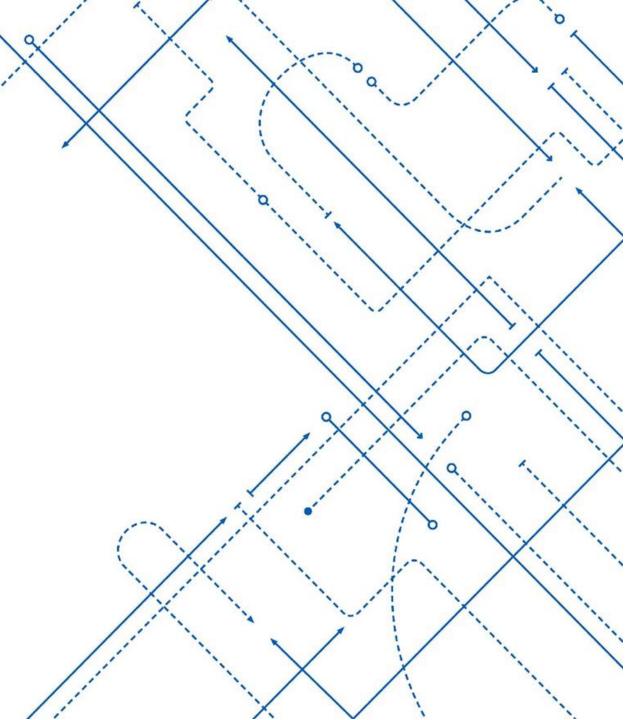


Results: Blocking State Mismatches

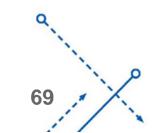
	Link			Download			Attachment			No Action		
Folk Model	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result
Graffiti	834	0.06	~	834	0.06	~	834	0.07	~	834	0.06	~
Burglar	<mark>834</mark>	0.07	~	834	0.05	~	834	0.07	~	834	0.06	~
Big Fish	<mark>834</mark>	0.07	~	834	0.06	~	834	0.06	~	834	0.05	~
Contractor	<mark>834</mark>	0.06	~	834	0.07	~	834	0.06	~	834	0.07	~

Table 5.4: Folk Model-Cross-Attack Verification Results: Blocking States

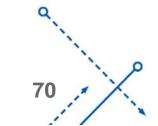

Note. A ✓ indicates a proof was returned, while a X indicates a counterexample was returned.


Validation using real-world data

- Used data collected by Cofense, phishing training and simulation
 - o **2016**: 18mos, 40 million simulation emails, 1,000 organizations
 - o **2017**: 24mos, 52.4 million emails, 216,000 real emails, 1,400 organizations
- Significant agreement between data and findings
 - False security: Real users fell for link-based attacks more than others
 - False vulnerability: Real users drastically over-report emails with links as phishing attempts
 - High face validity associated with these findings
- Some limitations to using a "found" data set vs purpose-collected data


Conclusion

Significant findings and takeaways


- A framework that ...
 - o extends Degani and Heymann (2002)'s concepts to cybersecurity
 - o establishes formal analytic constructs for cybersecurity applications
 - o improves rigor and brings runnability to folk modeling approaches
- To the best of our knowledge, these are completely novel developments
- Validated our findings using real-world data
 - o Sometimes difficult to do with work in formal methods
 - Finds potential vulnerabilities that exist without altering code or breaking the law

Future work

- Additional CTL recovery specifications
- Update Wash (2010)'s folk modeling concepts for modern threats
- Expand AWS method to include complete bucket policies
- Investigate physical exploit delivery strategies (e.g., rubber duckies)
- Explore specific software utilities (Gmail vs Outlook vs Thunderbird)
- Integrate our method into cybersecurity testbeds (National Cyber Range)

Published and planned literature

Dissertation-related work:

Houser, A., and Bolton, M.L. (2017). Formal mental models for inclusive privacy and security. In *Proceedings of the Thirteenth Symposium on Usable Privacy and Security (SOUPS)*, Santa Clara CA.

Houser, A., Bolton, M.L., Bisantz, A.M., and Zhuang, J. (n.d.) Discovering unanticipated human-automation interaction in cybersecurity using formal methods techniques. In preparation.

Plus one more journal article and perhaps two more conference papers...

Additional work:

Houser, A., Ma, L., Feigh, K., and Bolton, M.L. (2017). Using formal methods to reason about taskload and resource conflicts in simulated air traffic scenarios. *Innovations in Systems and Software Engineering*, 14(1), pp. 1-14. DOI 10.1007/s11334-017-0305-2.

Bolton, M. L., Zheng, X., Molinaro, K., **Houser, A.**, and Li, M. (2016). Improving the scalability of formal human-automation interaction verification analyses that use task analytic models. *Innovation in Systems and Software Engineering*, *13*(1), pp. 1-17. DOI 10.1007/s11334-016-0272-z.

Houser, A., Ma, L. M., Feigh, K., and Bolton, M. L. (2015). A formal approach to modeling and analyzing human taskload in simulated air traffic scenarios. In *Proceedings of the IEEE International Conference on Complex Systems Engineering*, 6 pages. Piscataway: IEEE.

Ma, L., **Houser, A.**, Feigh, K., and Bolton, M.L. (n.d.) An analysis of air traffic management concepts of operation using simulation and formal verification. Under review with the American Institute of Aeronautics and Astronautics (AIAA).

Published and planned literature

Published articles:

Houser, A., Ma, L., Feigh, K., and Bolton, M.L. (2017). Using formal methods to reason about taskload and resource conflicts in simulated air traffic scenarios. *Innovations in Systems and Software Engineering*, *14*(1), pp. 1-14. DOI 10.1007/s11334-017-0305-2.

Bolton, M. L., Zheng, X., Molinaro, K., **Houser, A.**, and Li, M. (2016). Improving the scalability of formal human-automation interaction verification analyses that use task analytic models. *Innovation in Systems and Software Engineering*, *13*(1), pp. 1-17. DOI 10.1007/s11334-016-0272-z.

Articles under review:

Ma, L., **Houser, A.**, Feigh, K., and Bolton, M.L. (n.d.) An analysis of air traffic management concepts of operation using simulation and formal verification. Under review with the American Institute of Aeronautics and Astronautics (AIAA).

Articles in preparation:

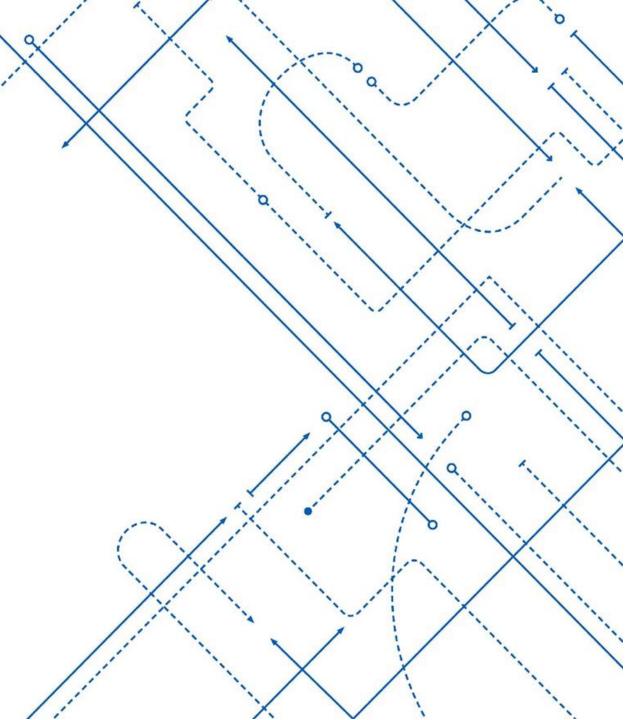
Houser, A., Bolton, M.L., Bisantz, A.M., and Zhuang, J. (n.d.) Discovering unanticipated human-automation interaction in cybersecurity using formal methods techniques.

Published conference papers:

Houser, A., and Bolton, M.L. (2017). Formal mental models for inclusive privacy and security. In *Proceedings of the Thirteenth Symposium on Usable Privacy and Security (SOUPS)*, Santa Clara CA.

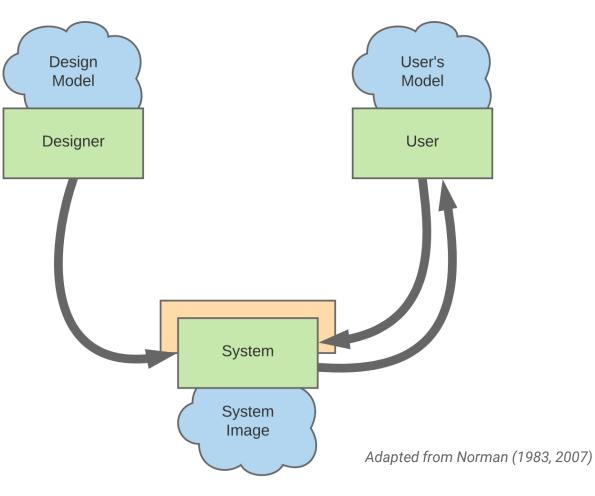
Houser, A., Ma, L. M., Feigh, K., and Bolton, M. L. (2015). A formal approach to modeling and analyzing human taskload in simulated air traffic scenarios. In *Proceedings of the IEEE International Conference on Complex Systems Engineering*, 6 pages. Piscataway: IEEE. **72**

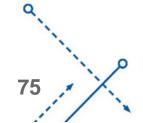
Thank you for attending!

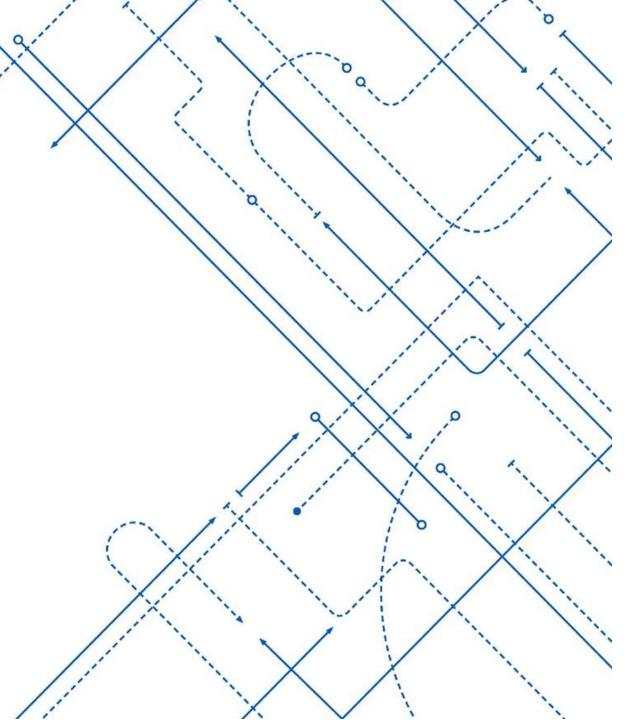

adam.m.houser@gmail.com

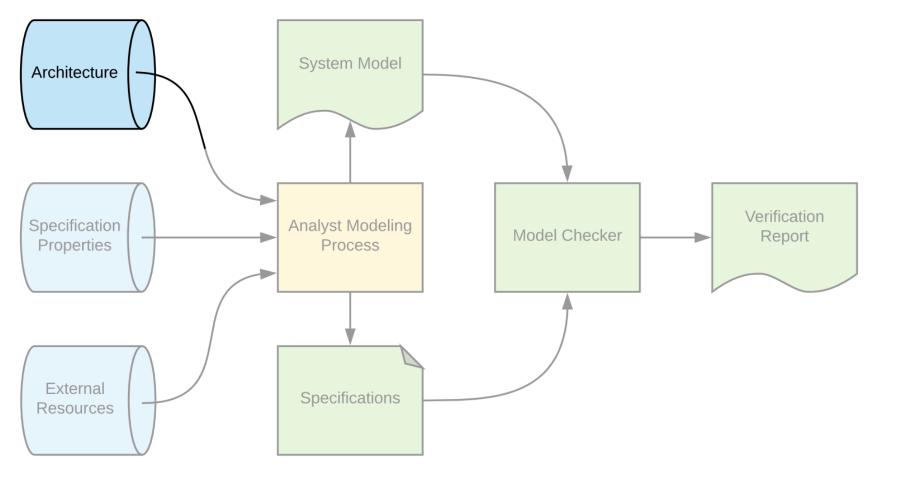
@neutrinos4all

appliedcaffeine.org



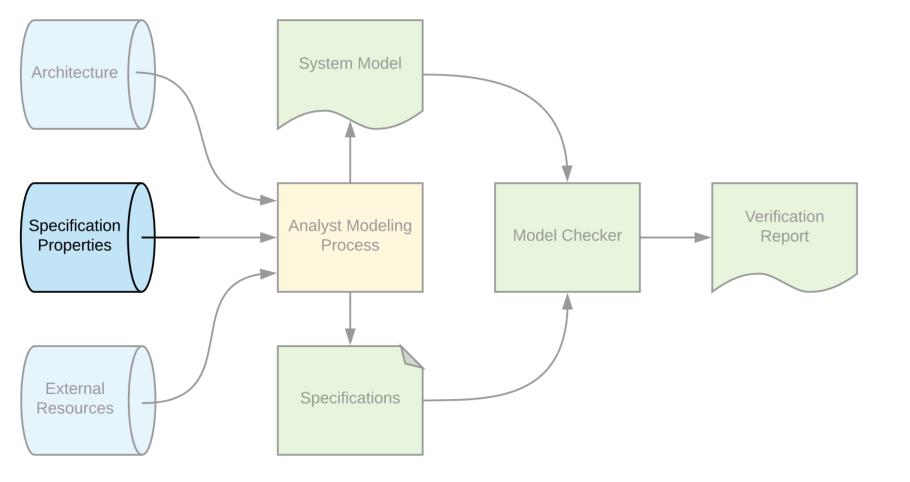

Reserve Slides

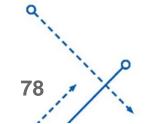

Norman on mental models

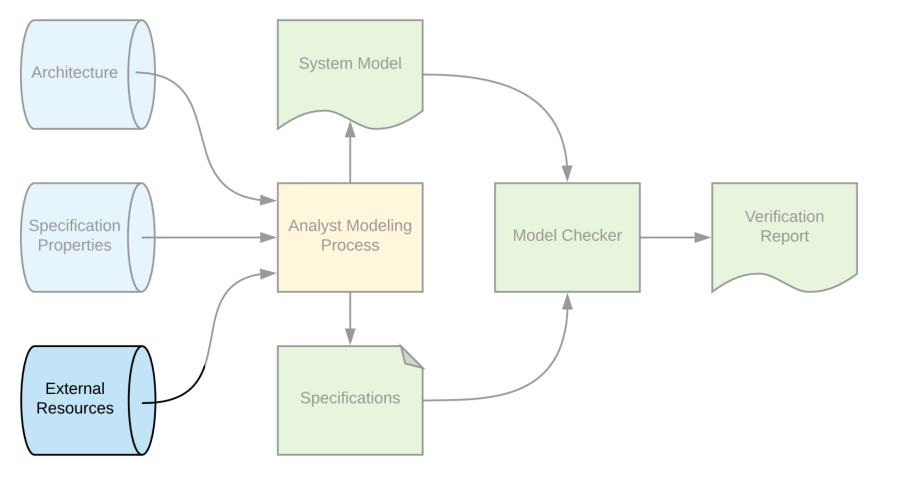


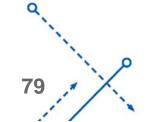


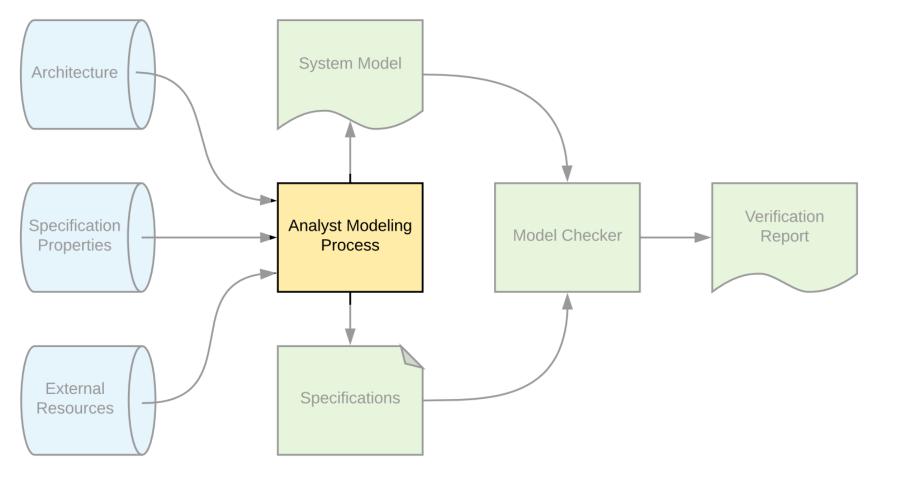
Generic formulation: Stepwise overview

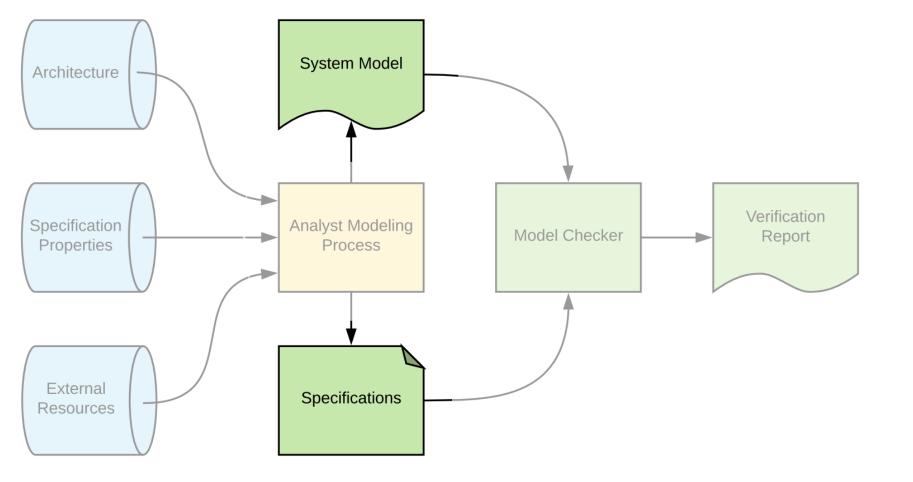


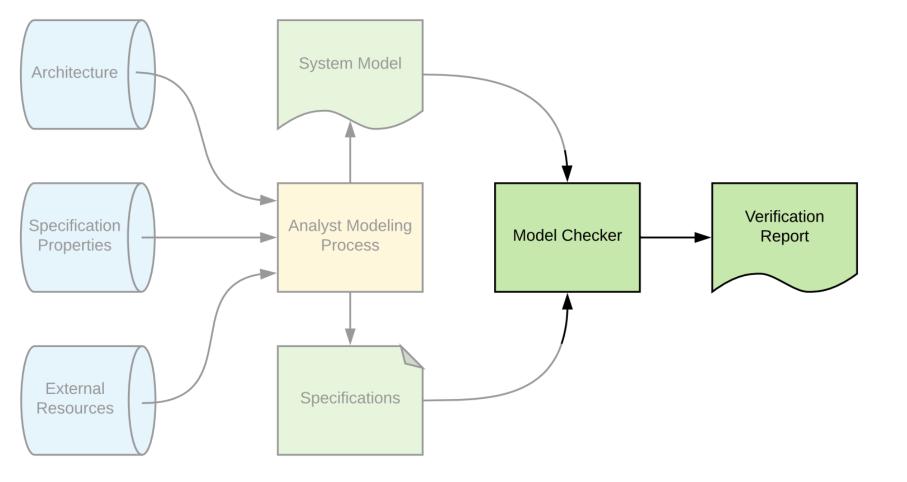


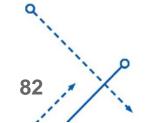


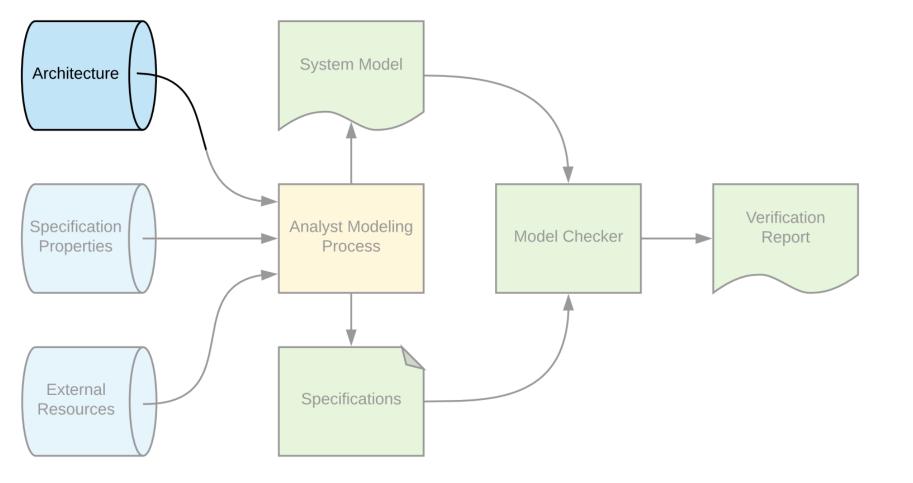


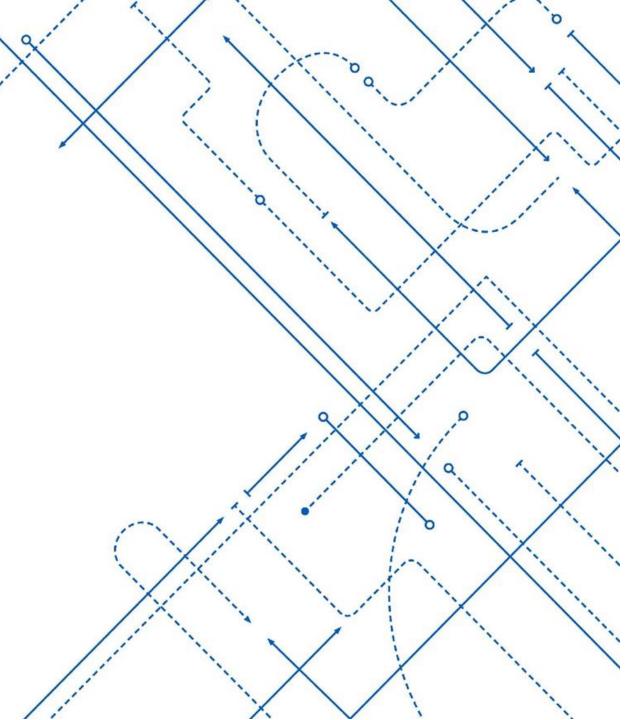






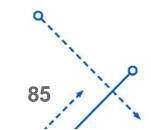






Method Architecture

Formal Model Code



The Action Generator module

actionPerm IN IF action = change_ObjectPermissions OR action = create_Bucket OR action = change_BucketPermissions THEN {x : permissionSetting | NOT (x.public AND isPrivate?(x))} ELSE {x : permissionSetting | (NOT x.public) AND isPrivate?(x)} ENDIF;

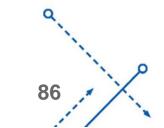
isPrivate?(perm : permissionSetting) : BOOLEAN = NOT perm.read AND NOT perm.write AND NOT perm.readPermissions AND NOT perm.writePermissions;

The System and User modules: Example 1

[] action = create_Object AND bucketExists AND NOT objectExists -->

objectExists' = TRUE; objectEncryption' = IF actionEnc = none_Option THEN bucketEncryption ELSE actionEnc

ENDIF;

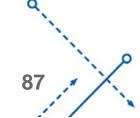

objectACL'

= actionPerm;

[] action = create_Object AND thinkBucketExists AND NOT thinkObjectExists -->

thinkObjectExists' thinkObjectEncryption' thinkObjectACL'

- = TRUE;
- = actionEnc;
- = actionPerm;



The System and User modules: Example 2

softwareRead =

IF objectExists AND objectACL.public AND (objectACL.read OR objectACL.readPermissions OR objectACL.writePermissions) THEN insecure ELSE secure ENDIF;

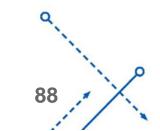
userRead = IF thinkObjectExists AND thinkObjectACL.public AND (thinkObjectACL.read OR thinkObjectACL.readPermissions) **AND thinkObjectEncryption = none_Option** THEN vulnerable ELSE safe ENDIF;

The Comparator module

falseVulnerabilityReadMM

falseVulnerabilityWriteMM

= (userRead = vulnerable AND softwareRead = secure);


= (userWrite = vulnerable AND softwareWrite = secure);

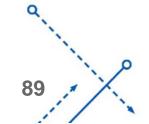
falseSafetyReadMM

= (userRead = safe AND softwareRead = insecure);

falseSafetyWriteMM

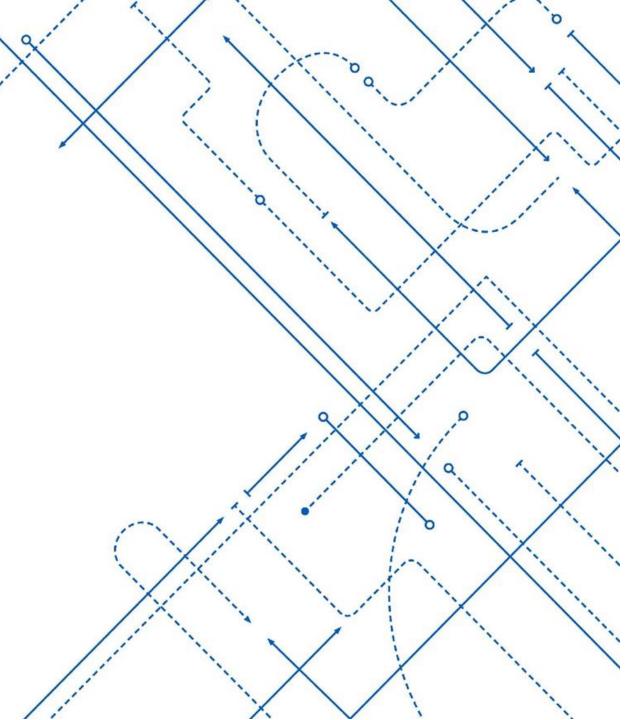
= (userWrite = safe AND softwareWrite = insecure);

Ο


Limitations

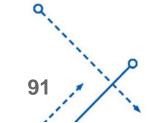
- Specification-based model checking finds one path to failure; could be others
- Investigated method of formulating specifications tailored to find scenarios in results

Authenticated User Mismatch			Encrypted but Readable			Surprising Inheritance		
 States	Time (s)	Result	States	Time (s)	Result	States	Time (s)	Result
3,777,972	1.19	×	3,833,412	0.14	×	2,200,836	0.38	×


Table 4.2: Amazon AWS S3 Use Case Findings Validation Results

Note. A ✓ indicates a proof was returned, while a × indicates a counterexample was returned.

Phishing Model Validation



Validation using real-world data

Template	Click-only	Data entry	Attachment-based
File from scanner	31.1		
Package delivery—alternate	25.8		
Unauthorized access		24.8	
Digital fax	20.2		
Package delivery	19.7		
Scanned file			18.4
RSA phish	13.1		
Password survey		12.9	
Secure email			12.2
Adobe security update	7.0		
Restaurant gift receipt			6.7
Google docs link	6.0		
Funny pictures			3.4
Relative ratios	.610	.187	.202

Table 5.5: Cofense Phishing Simulation Responses by Attack Strategy

Note. The values reported here indicate the percentage of users that clicked on the email out of all users who received it. For example, 31.1% of all users receiving the "file from scanner" phishing email clicked on it.

Ο

Validation using real-world data

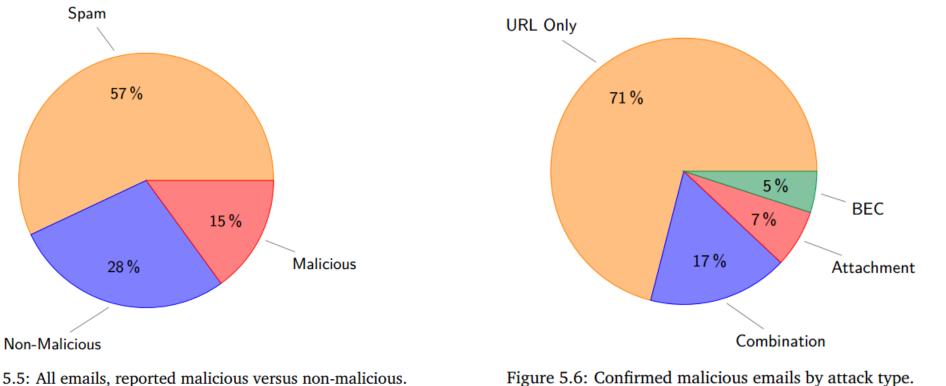
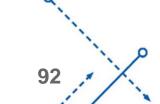



Figure 5.5: All emails, reported malicious versus non-malicious.

References

Ashok, I. (2017, December 1). National credit federation data leak: Over 100gb of sensitive customer data was left exposed online. International Business Times. Retrieved from http://www.ibtimes.co.uk/national-credit-federation-data-was-left-exposed-online-1649709

Baier, C., & Katoen, J. P. (2008). Principles of model checking. MIT press.

Blythe, J., & Camp, L. J. (2012). Implementing mental models. In 2012 IEEE Symposium on Security and Privacy Workshops (SPW) (p. 86-90).

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to evaluate human-automation interaction: A review. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3), 488-503.

Cameron, D. (2017, May 31). Top defense contractor left sensitive pentagon files on amazon server with no password. Gizmodo. Retrieved from https://gizmodo.com/top-defense-contractor-left-sensitive-pentagon-files-on-1795669632

Camp, L. J. (2004). Mental models of computer security. Financial Cryptography, 3110, 106-111.

Camp, L. J. (2009). Mental models of privacy and security. IEEE Technology and Society Magazine, 28(3), 37-46.

Cofense. (2016). Enterprise Phishing Susceptibility and Resiliency Report (Tech. Rep.). PhishMe. Retrieved from https://cofense.com/enterprise-phishing-susceptibility-report/

Cofense. (2017). Enterprise Phishing Susceptibility and Defense Report (Tech. Rep.). PhishMe. Retrieved from https://cofense.com/whitepaper/enterprise-phishing-resiliency-and-defense-report/

Collett, S. (2014, May 21). Five new threats to your mobile device security. CSO Online. Retrieved from http://www.csoonline.com/article/2157785/data-protection/five-new-threats-to-your-mobile-device-security.html

93

Craik, K. (1943). The Nature of Explanation. Cambridge University Press.

D'Andre, R. (1987). A folk model of the mind. In Cultural Models in Language and Thought (p. 112-148).

Degani, A., Shafto, M., & Kirlik, A. (1999). Modes in human-machine systems: Constructs, representation, and classification. The International Journal of Aviation Psychology, 9(2), 125-138.

Degani, A., & Heymann, M. (2002). Formal verification of human-automation interaction. Human Factors, 44(1), 28-43.

References

de Kleer, J., & Brown, J. S. (1981). Mental models of physical mechanisms and their acquisition. In Cognitive Skills and their Acquisition (p. 285-309). Erlbaum: Hillsdale, NJ.

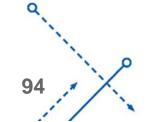
Dekker, S., & Hollnagel, E. (2004). Human factors and folk models. Cognition, Technology, and Work, 6, 79-86.

FBI: Cyber Crime. (2016). Retrieved 15 February 2017, from https://www.fbi.gov/investigate/cyber

Gartner. (2015, Sep 23). Gartner says worldwide information security spending will grow almost 4.7 percent to reach \$75.4 billion in 2015 (Tech. Rep.). Retrieved from https://www.gartner.com/newsroom/id/3135617

Juniper Research. (2015, May 12). Cybercrime will cost businesses over \$2 trillion by 2019 (Tech. Rep.). Retrieved from https://www.juniperresearch.com/press/press-releases/cybercrime-cost-businesses-over-2trillion

- Kumaraguru, P., Cranshaw, J., Acquisti, A., Cranor, L., Hong, J., Blair, M. A., & Pham, T. (2009). School of phish: a real-world evaluation of anti-phishing training. In Proceedings of the 5th symposium on usable privacy and security (p. 3).
- Morgan, S. (2016, Mar 9). Worldwide cybersecurity spending increasing to \$170 billion by 2020. Forbes. Retrieved from http://www.forbes.com/sites/stevemorgan/2016/03/09/worldwide-cybersecurity-spending-increasing-to-170-billion-by-2020/#7cde23d576f8

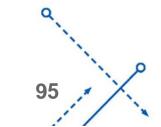

Newman, L. H. (2017, June 19). The scarily common screw-up that exposed 198 million voter records. Wired. Retrieved from https://www.wired.com/story/voter-records-exposed-database/

Norman, D. A. (1983). Some observations on mental models. In Mental Models (p. 7-14). Erlbaum: Hillsdale, NJ.

Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. Basic Books.

Oishi, M., Hwang, I., & Tomlin, C. (2003). Immediate observability of discrete event systems with application to user-interface design. In Proceedings of the 42nd IEEE Conference on Decision and Control, 2003 (Vol. 3, p. 2665-2672).

O'Sullivan, D. (2017, November 28). Black box, red disk: How top secret nsa and army data leaked online. UpGuard. Retrieved from https://www.upguard.com/breaches/cloud-leak-inscom


References

Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L. F., & Downs, J. (2010). Who falls for phish?: a demographic analysis of phishing susceptibility and effectiveness of interventions. In Proceedings of the SIGCHI conference on human factors in computing systems (p. 373-382).

Siadati, H., Palka, S., Siegel, A., & McCoy, D. (2017). Measuring the effectiveness of embedded phishing exercises. In 10th USENIX workshop on cyber security experimentation and test (CSET 17).

Wash, R. (2010). Folk models of home computer security. In Proceedings of the Sixth Symposium on Usable Privacy and Security (SOUPS) 2010 (p. 11).

Whittaker, Z. (2017, July 12). Millions of verizon customer records exposed in security lapse. InfoSecurity Magazine. Retrieved from http://www.zdnet.com/article/millions-verizon-customer-records-israeli-data/

Ο