
A Tour of the Lambda
Calculus

Adam Houser

Formal methods guest lecture
28 Nov 2016

𝝀-calculus, defined

• Model of computation (i.e., a formal system for defining computable
functions) that is Turing complete.

• POWER: computation through simplest
 possible functions, with focus
 on transformation rules for those functions.

• Underpins functional programming languages

(ex: Haskell, Coq, Elm).

• Note: no Newtonian calculus is involved.

Fundamentals

Names letters 𝑎, 𝑏, 𝑐, . . 𝑧

Functions transformations 𝜆𝑥. 𝑥
 𝑓(𝑥) = 𝑥

Applications expressions applied to 𝜆𝑥. 𝑥 𝑦
 functions

Expressions names, functions, 𝑎

 or applications 𝜆𝑥. 𝑥
 𝜆𝑥. 𝑥 𝑦

Fundamentals, continued

• Everything in pure (untyped) λ-calculus is a function; only concern is
computation via name substitution.

• All names are local to expressions.

• There are only a few different strategies used to evaluate functions,
which we will cover in a bit.

Evaluation

• When λ-calculus functions are evaluated, they are resolved.

• Resolution goes as far as it can by using substitution.

• Completion occurs when there are no more functions to evaluate.

This simplest form is called normal form.

• Next, we look at some resolution rules and strategies.

Evaluation rule: binding

Variables in λ-calculus can be either bound or free
• Bound = variable bound to λ and within the scope of the λ operator’s

expression
• Free = variable not bound to λ and beyond the scope of the λ operator’s

expression

 (𝜆𝑥. 𝑥𝑦) 𝑥 is bound, 𝑦 is free

 (𝜆𝑥. 𝑥)(𝜆𝑦. 𝑦𝑥) left 𝑥 is bound, right 𝑦 is bound

• POP QUIZ: in the second expression above, is the 𝑥 name consistent across
both functions?

Evaluation strategy: β-reduction

Purpose: simplifying expressions down to normal form.

 𝜆𝑥. 𝜆𝑧. 𝑥 𝑧 𝑦

 𝜆𝑥. 𝜆𝑧. 𝑥 𝑧 𝑦

 𝜆𝑦. 𝜆𝑧. 𝑦 𝑧 𝑦

 𝜆𝑧. 𝑦 𝑧

Evaluation strategy: β-reduction, with practice

Simplify the following expression to normal form.

 𝜆𝑦. 𝑥 𝑦𝑧 𝑎𝑏

 𝜆𝑎𝑏. 𝑥 𝑎𝑏 𝑧 𝑎𝑏

 𝑥((𝑎𝑏)𝑧) or 𝑥(𝑎𝑏 𝑧)

Evaluation strategy: α-conversion

Purpose: reassigning names to prevent incorrect or “illegal” reductions.

 𝜆𝑥. 𝜆𝑦. 𝑥𝑦 𝑦 𝜆𝑥. 𝜆𝑦. 𝑥𝑦 𝑦 → 𝛼
𝜆𝑥. 𝜆𝑡. 𝑥𝑡 𝑦

 𝜆𝑦. 𝜆𝑦. 𝑦𝑦 𝑦 𝜆𝑦. 𝜆𝑡. 𝑦𝑡 𝑦

 𝜆𝑦. 𝑦𝑦 𝜆𝑡. 𝑦𝑡

Church numerals

• Numbers have to be encoded as functions, because untyped λ-
calculus doesn’t provide any vocabulary for talking about numbers.

• Critical to Church numerals: the successor function, which adds 1 to
any existing function:

 0 = 𝜆𝑠𝑧. 𝑧
 1 = 𝜆𝑠𝑧. 𝑠(𝑧)

 2 = 𝜆𝑠𝑧. 𝑠 𝑠 𝑧

 3 = 𝜆𝑠𝑧. 𝑠 𝑠 𝑠 𝑧

Additional capabilities

Arithmetic operations: 2 + 3

 𝜆𝑠𝑧. 𝑠 𝑠 𝑧 𝜆𝑤𝑦𝑥. 𝑦 𝑤𝑦𝑥 𝜆𝑡𝑢. 𝑡 𝑡 𝑡(𝑢

Booleans

• 𝑇 ≡ 𝜆𝑥𝑦. 𝑥
• 𝐹 ≡ 𝜆𝑥𝑦. 𝑦

Logical operations and conditionals

• AND, OR, NOT.

• If > then > else.

Implementation
“A formal approach to modeling and analyzing human taskload in simulated air
traffic scenarios.”

Background:
• Using simulation and formal methods synergistically to discover interesting,

potentially dangerous human taskload conditions.
• This particular WMC scenario used one ATC, three aircraft agents in a simulated

landing at an airport.
• NextGen Air Traffic Control system: shifting authority and autonomy allocation of

current air navigation paradigm.
• As actions are executed by all agents during landing, can we use formal methods

to find problematic corner cases in the simulation trace?

Representing action queues efficiently

Assigning actions to queues (explained in a bit) is computationally
intensive for SAL:

• Agent modules must keep track of all actions in their Active and Inactive sets,

with the goal of identifying violations (e.g., exceeding maxInactive)

• Action modules must determine (based on whether their status is doing,
assigning, or shuffling) if their state is set to active, interrupted, or delayed.

• This must be computed for each simulation tick, maintained in memory, then

manipulated and stored in memory during the following tick.

Solution: using 𝝀-calculus sets with queues

Much more efficient way to handle complex operations.

Maps elements to Boolean values:
• True = in the set
• False = not in the set

Efficiency improvement results from set mapping: concern is now
about set membership, rather than computing arrays or manipulating
array data.

Formal model
This is the formal model architecture used in our evaluation.

Actions

Agents

Scheduler

Action

Agent

actions

agents

status

assignment

globalTime

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

status = assigning

assignment

globalTime

The scheduler examines the globalTime and

indicates to the actions if they are assigned to an

agent:

Assigned actions are set to waiting.

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

status = shuffling

assignment

globalTime

The Action modules reshuffle their states

(Active, Waiting, or Delayed) based on:

1. The size of the associated agent’s queue

2. The cardinality of the active agent’s queue

3. The agent’s minimum priority active action

4. The agent’s maximum priority inactive action

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

assignment

globalTime

Once there is nothing else to move:

• The globalTime is updated

status = doing

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

assignment

globalTime

Once there is nothing else to move:

• The globalTime is updated

• Active actions are performed

(their time is correspondingly reduced)

• Completed actions (0 time) are unassigned

status = doing

19

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

status

assignment

globalTime

The agent dynamically updates queue metrics based on

the shuffling, performance, and completion of actions:

• Cardinality of active and inactive priority queues

• Minimum priority active actions

• Maximum priority inactive actions

20

Formal Model

Actions

Agents

Scheduler

Action

Agent

actions

agents

status = assigning

assignment

globalTime

The process restarts with the scheduler

assigning new actions based on the new

globalTime

Useful resources

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

http://worrydream.com/AlligatorEggs/

https://zeroturnaround.com/rebellabs/what-is-lambda-calculus-and-why-should-
 you-care/

http://people.eecs.berkeley.edu/~gongliang13/lambda/#firstPage

https://www.cs.umd.edu/class/spring2012/cmsc330/lectures/22-lambda.pdf

Bonus Slides
A successor function:

S≡ 𝜆𝑤𝑦𝑥. 𝑦 𝑤𝑦𝑥

Apply it to zero, with the hopes of getting 1:

S0≡ 𝜆𝑤𝑦𝑥. 𝑦 𝑤𝑦𝑥 𝜆𝑠𝑧. 𝑧

𝜆𝑦𝑥. 𝑦 𝜆𝑠𝑧. 𝑧 𝑦𝑥

𝜆𝑦𝑥. 𝑦 𝜆𝑧. 𝑧 𝑥

𝜆𝑦𝑥. 𝑦 𝑥

𝜆𝑠𝑧. 𝑠(𝑧)

S0≡1

Bonus Slides

