
www.buffalo.edu

Overview

In complex systems, like the modern air traffic system, human

operator taskload (the number of tasks the human needs to

perform) can have a profound influence on how well the system

performs. Because of the system’s complexity, however, it can be

difficult to determine all of the situations where taskload issues

can arise. Simulation and formal verification have been used

separately to explore human taskload in complex systems.

However, both have problems that limit their usefulness.

Simulation scales well, but can miss critical operating conditions.

Formal verification can mathematically prove whether or not a

system does or does not adhere to desirable properties, but is

severely restricted by scalability. This poster will describe the

method we have developed that allows us to use formal

verification synergistically with simulation. Specifically, we avoid

scalability problems by using formal verification analyses to find

interesting taskload conditions in abstract models of simulation

traces. These conditions can then be fed back to the simulation

for deeper analysis. We provide the background necessary for

understanding this method. We present the method itself along

with several checkable specification properties that can be used

to find interesting taskload conditions. Finally, we explore how our

developments can be used in future analyses of human operator

task load in aerospace applications and other domains.

Background

Implementation

Figure 1 illustrates how our method synergistically uses formal

verification and the WMC simulation together. Several key

components make the environment possible:

• The WMC model describes the work inherent to the air traffic

control and aircraft flight domain, and the scenario describes

a particular schedule of events to occur and a number of

aircraft and ATC agents involved;2-4

• The simulation serves as the engine to compute through the

scenario’s dynamic, complex interactions and behavior;

• Generation of the formal model uses a translator (a software

tool we have created) to read in the simulation trace and

create a checkable model and specifications relating to

taskload across different agents;

• Discovered counterexamples can be translated back into

WMC scenarios and run again, thereby determining if

problematic taskload conditions have been ameliorated.

One of the central challenges of this work was the development of

a formal architecture that could efficiently implement WMC

concepts while remaining parsimonious with its simulation

framework. Our solution can be found in Figure 2, below.

Important aspects of functionality include interactions between the

Scheduler, Actions, and Agents modules: how the simulation

progresses based on its status; how Agents manage the actions

in their active and inactive priority queues; and how the Scheduler

assigns actions and advances globalTime. Timed automata are

used to enable this behavior and maintain synchronicity as the

model progresses across the scenario.5,6

Analytic Capabilities

This specification looks for an overload of actions that have been

delayed or interrupted (inactive), thereby exceeding the Inactive

queue capacity; for human operators, an excessive burden on

working memory can lead to forgotten actions.

Human operators may also forget an action if it remains in

working memory for too long. This specification searches for a

condition where an action that has been assigned to an agent has

not performed for an excessive amount of time (timeMax).Because integrating the WMC simulation environment with a

formal modeling framework had not been done before, our work

developed several techniques to reduce statespace complexity

and accurately represent simulation constructs.

In particular, representing the dynamic action allocation and

priority queue operations proved to be incredibly difficult to

implement efficiently in our formal model. We addressed this by

using λ-calculus to treat these operations as functions over λ-

calculus sets.7 For example, in

the model checker determines which actions are ready for

assignment by looking for those in the set of actionIDs with a

state of notAssigned and an update time equal to the current

globalTime. Drastic efficiency savings come from mapping

actions ready for assignment to True and those not ready to

False, rather than computing, storing, modifying, and performing

operations on a complete and persistent set of actionIDs.

Current and Future Work

We are currently testing the capabilities of our framework. This

preliminary instantiation includes hooks for finding excessive

Active and Inactive queue load conditions, excessive taskload

conditions, and excessive task interruptions across all simulation

agents. We also have the ability to search for conflicts between

agent actions. Future work will investigate whether taskload can

cause air traffic delays in emerging air traffic control concepts.

Novel Computational Developments

Below discusses necessary background information on formal

verification and simulation.

Formal verification comes from the area of formal methods.

Formal methods describes a body of well-defined mathematical

languages and techniques for the modeling, specification, and

verification of target systems. A model is a system abstraction

described in a mathematically-coherent manner (usual a state

machine). Specifications are (desirable and/or undesirable)

properties to which a system model should adhere (usually

asserted in a temporal logic). Formal verification mathematically

proves whether or not a system model satisfies a specification.

Model Checking performs formal verification by exhaustively

searching a model’s statespace to determine if a specification

holds. A proved specification is confirmed, otherwise a

counterexample is generated: a trace through the model’s

statespace showing exactly how the violation occurred.

WMC (Work Models the Compute) is an agent-based aerospace

simulation currently in development at Georgia Tech. WMC

allows analysts to evaluate the performance of complex air traffic

control scenarios that account for the performance of both the

aircraft and the human operator. In particular, WMC can account

for human operator taskload by giving human operators limited-

capacity active and inactive priority queues.1

A Formal Approach to Modeling and Analyzing Human Taskload in Simulated Air Traffic Scenarios
Adam M. Houser and Matthew L. Bolton, Ph.D.

Department of Industrial and Systems Engineering

Figure 1. Method for the synergistic use of WMC simulation and model checking.

SpeciSpeciSpecificationsWMC Model

Translation Formal Model

Model Checking

Translation 2

Counterexample /

Model Trace

Generated

Scenarios

WMC

Simulation

Simulation

Results
WMC Scenario

Simulation

Trace

Figure 2. Formal modeling architecture representing WMC concepts.

The following linear temporal logic (LTL) specifications are

examples that can be used to search for a number of different

human operator taskload conditions.

This specification searches for situations in which a given

agent’s “active actions” queue count never meets or exceeds

the capacity of the active queue. A counterexample would

indicate an excessive taskload condition, such as an agent

attempting to perform multiple actions simultaneously.

References

1A. R. Pritchett and K. M. Feigh. (2011). “Simulating first-principles models of situated

human performance.” In Proceedings of the IEEE First International Multi-Disciplinary

Conference on Cognitive Methods in Situation Awareness and Decision Support, pp. 144–

151.

2A. R. Pritchett. (2013). “Simulation to assess safety in complex work environments,” J. D.

Lee and A. Kirlik, Eds. New York: Oxford University Press, pp. 352–366.

3A. R. Pritchett, K. M. Feigh, S. Y. Kim, and S. K. Kannan. (2014). Work models that

compute to describe multiagent concepts of operation: Part 1. Journal of Aerospace

Information Systems,11(10), 610–622.

4A. R. Pritchett, S. Y. Kim, and K. M. Feigh. (2014). Modeling human–automation function

allocation. Journal of Cognitive Engineering and Decision Making, 8(1), 33–51.

5R. Alur and D. L. Dill. (1994). A theory of timed automata. Theoretical Computer Science,

126(2), 183–235.

6B. Dutertre and M. Sorea, “Timed systems in SAL,” SRI International, Tech. Rep.

NASA/CR-2002-211858, 2004.

7G. Smith and L. Wildman. (2005). “Model checking z specifications using SAL.” In Formal

Specification and Development, Eds. Z and B. Springer. 85–103.

8D. C. McFarlane and K. A. Latorella. (2002). The scope and importance of human

interruption in human-computer interaction design. Human- Computer Interaction, 17(1),

1–61.

This work was supported by the grant “Scenario-Based Verification and Validation of Autonomy and Authority” from the

NASA Ames Research Center under award number NNX13AB71A.

INDUSTIAL AND SYSTEMS ENGINEERING

