
www.buffalo.edu

Overview

In complex systems, like the modern air traffic system, human 

operator taskload (the number of tasks the human needs to 

perform) can have a profound influence on how well the system 

performs. Because of the system’s complexity, however, it can be 

difficult to determine all of the situations where taskload issues 

can arise. Simulation and formal verification have been used 

separately to explore human taskload in complex systems. 

However, both have problems that limit their usefulness. 

Simulation scales well, but can miss critical operating conditions. 

Formal verification can mathematically prove whether or not a 

system does or does not adhere to desirable properties, but is 

severely restricted by scalability. This poster will describe the 

method we have developed that allows us to use formal 

verification synergistically with simulation. Specifically, we avoid 

scalability problems by using formal verification analyses to find 

interesting taskload conditions in abstract models of simulation 

traces. These conditions can then be fed back to the simulation 

for deeper analysis. We provide the background necessary for 

understanding this method. We present the method itself along 

with several checkable specification properties that can be used 

to find interesting taskload conditions. Finally, we explore how our 

developments can be used in future analyses of human operator 

task load in aerospace applications and other domains.

Background

Implementation

Figure 1 illustrates how our method synergistically uses formal 

verification and the WMC simulation together. Several key 

components make the environment possible:

• The WMC model describes the work inherent to the air traffic 

control and aircraft flight domain, and the scenario describes 

a particular schedule of events to occur and a number of 

aircraft and ATC agents involved;2-4

• The simulation serves as the engine to compute through the 

scenario’s dynamic, complex interactions and behavior;

• Generation of the formal model uses a translator (a software 

tool we have created) to read in the simulation trace and 

create a checkable model and specifications relating to 

taskload across different agents; 

• Discovered counterexamples can be translated back into 

WMC scenarios and run again, thereby determining if 

problematic taskload conditions have been ameliorated.

One of the central challenges of this work was the development of 

a formal architecture that could efficiently implement WMC 

concepts while remaining parsimonious with its simulation 

framework. Our solution can be found in Figure 2, below. 

Important aspects of functionality include interactions between the 

Scheduler, Actions, and Agents modules: how the simulation 

progresses based on its status; how Agents manage the actions 

in their active and inactive priority queues; and how the Scheduler 

assigns actions and advances globalTime. Timed automata are 

used to enable this behavior and maintain synchronicity as the 

model progresses across the scenario.5,6

Analytic Capabilities

This specification looks for an overload of actions that have been 

delayed or interrupted (inactive), thereby exceeding the Inactive 

queue capacity; for human operators, an excessive burden on 

working memory can lead to forgotten actions.

Human operators may also forget an action if it remains in 

working memory for too long. This specification searches for a 

condition where an action that has been assigned to an agent has 

not performed for an excessive amount of time (timeMax).Because integrating the WMC simulation environment with a 

formal modeling framework had not been done before, our work 

developed several techniques to reduce statespace complexity 

and accurately represent simulation constructs. 

In particular, representing the dynamic action allocation and 

priority queue operations proved to be incredibly difficult to 

implement efficiently in our formal model. We addressed this by 

using λ-calculus to treat these operations as functions over λ-

calculus sets.7 For example, in

the model checker determines which actions are ready for 

assignment by looking for those in the set of actionIDs with a 

state of notAssigned and an update time equal to the current 

globalTime. Drastic efficiency savings come from mapping 

actions ready for assignment to True and those not ready to 

False, rather than computing, storing, modifying, and performing 

operations on a complete and persistent set of actionIDs.

Current and Future Work

We are currently testing the capabilities of our framework. This 

preliminary instantiation includes hooks for finding excessive 

Active and Inactive queue load conditions, excessive taskload

conditions, and excessive task interruptions across all simulation 

agents. We also have the ability to search for conflicts between 

agent actions.  Future work will investigate whether taskload can 

cause air traffic delays in emerging air traffic control concepts.

Novel Computational Developments

Below discusses necessary background information on formal 

verification and simulation.

Formal verification comes from the area of formal methods. 

Formal methods describes a body of well-defined mathematical 

languages and techniques for the modeling, specification, and 

verification of target systems. A model is a system abstraction 

described in a mathematically-coherent manner (usual a state 

machine). Specifications are (desirable and/or undesirable) 

properties to which a system model should adhere (usually 

asserted in a temporal logic). Formal verification mathematically

proves whether or not a system model satisfies a specification.

Model Checking performs formal verification by exhaustively 

searching a model’s statespace to determine if a specification 

holds. A proved specification is confirmed, otherwise a 

counterexample is generated: a trace through the model’s 

statespace showing exactly how the violation occurred.

WMC (Work Models the Compute) is an agent-based aerospace 

simulation currently in development at Georgia Tech. WMC 

allows analysts to evaluate the performance of complex air traffic 

control scenarios that account for the performance of both the 

aircraft and the human operator. In particular, WMC can account 

for human operator taskload by giving human operators limited-

capacity active and inactive priority queues.1
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Figure 1. Method for the synergistic use of WMC simulation and model checking.
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Figure 2. Formal modeling architecture representing WMC concepts.

The following linear temporal logic (LTL) specifications are 

examples that can be used to search for a number of different 

human operator taskload conditions.

This specification searches for situations in which a given 

agent’s “active actions” queue count never meets or exceeds 

the capacity of the active queue. A counterexample would 

indicate an excessive taskload condition, such as an agent 

attempting to perform multiple actions simultaneously.
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